Description
Vehicle sharing systems allow customers to use various vehicles without the need to own each vehicle. There are different types of vehicle sharing systems on the market. Differences can include the type of vehicle shared, like car sharing, bike sharing, scooter sharing or electric vehicle sharing. In addition to the type of the vehicle, one main difference between vehicle sharing systems is the vehicle holder. Most commonly, the operator owns the vehicles that are then shared with the users. Another opportunity is peer-to-peer vehicle sharing, in which the citizens share their own vehicles. For each vehicle sharing system, it is necessary to ensure the accessibility of the vehicles and to manage the location and operation of the vehicles.
The growth of vehicle sharing systems is driven by urbanisation, increasing smartphone penetration, growth in internet of things (IoT), climate change, regulations, growing awareness about the environment and personal health etc. (SUNRISE, 2020)
Problems to be solved
GHG emissions | Congestion | Large space consumption | Deficits in intermodality | High investment costs | Pollution |
Benefits
The main goal of Vehicle Sharing Systems is to reduce the private vehicle ownership. Thereby, it ireduces the number of vehicles in an urban area while increasing the number of flexible services for citizens. Besides that, the solution achieves the benefits listed below. Whereas some benefits are likely to be fulfiled with a basic implementation of the solution, the fulfilment of the potential benefits depends on the functions implemented in a specific project.
Potential Benefits
Promoting sustainable private transport models
Reducing GHG emissions
Enhanced data collection
Improved data accessibility
Improving traffic management
Reducing use of fossils
Functions
Functions help you to understand what the products can do for you and which ones will help you achieve your goals.
Each solution has at least one mandatory function, which is needed to achieve the basic purpose of the solution, and several additional functions, which are features that can be added to provide additional benefits.
Mandatory Functions
accessing service
Products, that enable users to access the vehicles (e.g. via an app)
moving passengers with shared vehicles
Vehicles that move the useres, such as bikes, scooters or cars
paying for vehicle sharing system
Services, that enable a payment of the services (e.g. distance- or time-based)
managing vehicle fleet
Products, that manage and coordinate the vehicles of the fleet
informing customers about vehicle sharing
Products, that inform the customer about the services (e.g. apps, websites)
Potential Functions
charing shared electric vehicles
If electric vehicels are within the shared fleet, charging facilities are neccessary
connecting vehicles of the shared fleet
Vehicle to vehicle communication can be used within the fleet
connecting different vehicle sharing systems
To improve the usability mobility cards or other instruments can be used to give users access to several vehicle
Products offering these functions
Fleet Management
Comprehensive service portfolio gives fleet managers a constant, real-time overview of all vehicle data so they can optimize operational processes.
Variants
There are many different variants of vehicle sharing systems what differ in degree of shared usage and flexibility of usage,

Different variants of a vehicle sharing system (statista, 2020)
Vehicle sharing systems like Car sharing and car rentals have the longest distance (15+km). Ride hailing is normally used for distances between 5-15km. Short distances between 0-5km are often done with shared bikes or scooters.

Different variants of vehicle sharing systems by disctance (statista, 2020)
(SUNRISE, 2020, statista, 2020)
Description
Professional service provider offer an organised joint use of cars at different stations in the city in reserved parking spots. Users pick up the car at a station and return it after use to the same station. Electric cars can also be offered. The system functions mostly with memberships for the customers. The provider is responsible for the maintenance and repair of the vehicles.
The example of Bremen shows that through 390 shared cars ca. 6.000 private cars have been taken off roads which equals 100mio€ that otherwise would have to been invested in underground car parks. Car-sharing in general reduces costs for investment, insurance, parking and maintenance.
Use Cases
Corporate Electric Car Sharing for University
The aim was to reduce staff using their own cars for university business, and to increase the use of Electric Vehicles at the Manchester Metropolitan University. The sharing scheme is managed by a third party enterprise through an online booking system.
Station bound district car sharing
With the aim to improve the sharing of green mobility solutions, 3-5 sharing cars are operated by several contractors in Strijp-S, Eindhoven.
E-Car Sharing in social housing BWSG-Hauffgasse
E-Car sharing in the social neighbourhood is an innovative approach in the issue of e-mobility in social housing, contributing not only to the environmental goals but also to the community building as a strong societal element.
Description
Free-floating cars can be picked up wherever the previous user parked it in the predefined operational area. The cars can therefore be uses one-way. The locations of the cars are shown in the app. The system only allows reservations a short time in advance which enables high flexibility. Compared to station-based services, free floating is very expensive (e.g., 24€/8,5€ for 2 hours). Both types of car-sharing have only small effects on car ownership because every second user also has his own car.
Description
This system describes the sharing of privately owned vehicles that normally are only used for one hour a day. Therefore, car-sharing can use resources more efficiently and share costs between owner and users. New service platforms bring the parties together and manage bookings and payments.
Use Cases
Peer-to-Peer (P2P) Car Sharing Platforms
GoMore and SnappCar are delivering Peer-to-Peer (P2P) car sharing platforms, making it simple to adopt a car-light lifestyle in the City of Stockholm.
Description
Bike-sharing services are well established worldwide and are used for many different occasions. E-bikes can be integrated but require higher investments because of the charging infrastructure. Like cars bicycles can be shared station-based and free-floating. Moreover, hybrid systems are used. A locking system can be integrated in the docking station or in the app. Bike-sharing can be run by the city or private providers. The benefits of bike-sharing are the missing investment costs and the ability to avoid crowded streets. Aside from beneficial effects on the health through reduced emissions, users also profit from the (regular) movement.
Use Cases
Public bike sharing system in Tartu
With the aim of encouraging the use of bicycles and make this a considerable alternative to cars, the city of Tartu has implemented a city wide bike sharing scheme as part of the SmartEnCity Project. The system consists of public city bikes, parking lots with safety locks and a management system.
Description
To also provide a sustainable transport option for heavy or large items, cargo bikes are already implemented in many cities. The differ between having electric support or not, having the cargobox in the front or in the back, charging at a station or private, etc. Cargo bikes are especially seen as an alternative for last mile delivery because they are environmentally friendly, space-saving and congestion-free.
Use Cases
Offering a Test Fleet of E-Bikes and Cargo Bikes
This measure consists of offering companies and residents in Årsta district in Stockholm, the possibility to test e-cargo bikes for a limited period of time in order to find out whether, and to what extent, these vehicles provide a viable mobility option.
E-Bike Sharing for the District
A first E-Bike terminal was opened in April 2018 at the central cemetery of Vienna. A second terminal is at the mobility point. 12 E-Bikes and a Cargo-Bike are in operation. The E-Bikes are available via the SIMBike App or through a chip card offered at the spot. Sycube developed the whole system.
Description
Mopeds or motor scooters travel faster and more efficiently on urban roads than cars. Mopeds are mostly free-floating and are manage through an app. The batteries are recharged by the motor scooter providers. The usually allowed distance us between 50 and 100 km. The speed is generally limited to ca. 45km/h because of driving licenses . E-Mopeds with higher speed are also in use, e.g. in Madrids police with up to 90km/h.
Description
E-Scooters are new on the market although now available in many cities. They are often designed as free-floating which leads to many conflicts because of random parking which creates barriers on pavements. The “juicers” collect the scooters for recharging and distribute the vehicles afterwards in the city. E-Scooters are especially useful for the last mile e.g., for commuters or tourists. The costs normally consist of a unlock fee (ca. 1€) and prices per minute (ca. 20ct). Thus, they can be regarded as the most expensive option of shared mobility.
Use Cases
E-Scooter sharing service in Stockholm
To provide a new form of green micro mobility to Stockholm citizens, VOI introduced shared dockless electric scooter sharing service in the city.
Description
Aside from ride sharing with family members etc. also ride sharing software can be used to find someone to share the vehicle mostly as a regular commuter alternative or for occasional long-distance journeys.
Description
Ride hailing is an alternative to taxi and uses app-based booking platforms. The app shows the location of potential private drivers in real time. In the EU only professional drivers are allowed (e.g., Uber).
Description
Several passengers with different destinations can be transported by bus-on-demand services. They often use minibuses and a dynamic pooling algorithm that assigns the passengers to an existing ride. Clients are picked up and transported together on a completely dynamic route which leads to lower prices and more time needed for a ride compared to taxis.
City Context
Vehicle sharing systems are part of “mobility as a service” (MaaS). It describes the approach to provide access to various mobility services, such as public transport, car sharing, cabs etc. in one integrated, digital mobility offering, which can cover all individual transport demands. The user enters a start location and destination into the app, which then shows different options on how to travel. MaaS approaches are implemented in a growing number of cities to fully exploit the full potential of shared mobility.
(SUNRISE, 2020)
Supporting Factors
- Already existing mobility stations – starting point for an area-wide implementation
- Dense cities enable a higher number of users and a more efficient and convenient distribution of vehicles and stations.
- A public charging infrastructure for electric vehicles can support the business model as electric vehicles might be part of the shared vehicle fleet.
- Available parking areas
- Proper bike lanes and other connected infrastructure
Stakeholder Mapping

Stakholder mapping for vehicle sharing systems (BABLE, 2021)
Market Potential

Global Car-sharing revenue forecast in million USD (statista, 2020)
The different segments of vehicle sharing show high growth rates. The average growth rate of car-sharing is 7.6% per year and of bike-sharing 14.5%. The penetration rates are very low. Therefore, there is high potential for an expansion.

Innovation diffusion curve for Car-sharing for 2019 (statista, 2020)
The overall number of car sharing users is continously increasing and is predicted to be 36 million in 2025.

Developement of global car sharing users (statista, 2020)
Moped sharing is implemented in 122 cities in 22 countries and had 9 million users in 2020 (compared to 4 million in 2019). The number of mopeds increased about 38.000 mopeds to 104.000 mopeds over all in 2020.
(unumotors, 2021)
Business Model
Pricing
A comparison of vehicle sharing providers in Berlin shows that E-Scooters are sometimes even more expensive than car-sharing. The reason for the high costs are high expenses for logistics. The best vehicle sharing solution depends on the distance, price model (minute-based fee, subscription fee, extra costs for fuel etc.) and local road and bicycle connections. Some vehicle sharing companies also offer hourly-based or daily-based rates.

Prices for different vehicles for short distance in Berlin. Way from Hackescher Markt to Checkpoint Charlie (2.3 km by bicycle and 2.8 km on street) (Business Insider & Mydealz, 2019)
Cost Structure
The primary costs of a vehicle sharing system are the initial costs for vehicles and the chargers, if necessary. The operational costs are mostly the costs of fuelling, maintaining and cleaning the vehicles as well as expenses related to customer service and insurance.
The implementation costs for bike sharing systems are ca. 2.500€-3.000€ per bike. They consist of: station building (70%), bicycles (17%), operation equipment (6%), communication (5%), and management (2%). The maintenance costs for bike sharing systems are ca. 1.500-2.500€ per year. They consist of: redistribution of bicycles (30%), maintenance of bicycles (22%), maintenance of stations (20%), back-end system (14%), management (13%) and replacement of bicycles and stations (1%). (OBIS, 2011)
The costs for car-sharing depend on the number of cars, the needed charging stations, the implementation, the maintenance, etc. Charging stations costs around 700 to 5.000€. The costs of electric cars start at around 24.000€. (DGRV, 2021)
E-Scooter (kickboards) can be charged on normal sockets. If stations are used for E-scooters in public saces, it is often to organize the public space and not for charging. The price for E-Scooters for private uses is between 400 and 2000€. (verivox, 2021)
The implementation of vehicle sharing systems is often bundled at mobility stations that are managed by the city or public transport provider. On example is a mobility station in Rendsburg, Germany with bicycle parking, a bench, a repair-station for bicycles, lighting, opportunity for bike sharing, one parking spot for car-sharing and signs. With construction the costs add up to 84.500€. (KielRegion, 2020)
Legal Requirements
- Parking fees and equality of all cars limit the freedom to operate
- Age limits used by different car sharing providers: Usually between 18 and 21 years of age or depending on the time holding a driving license
- Different European regulations regarding E-scooters (e.g., speed limit)
The creation of this solution has been supported by EU funding
Use Cases
Bike and Car Sharing Schemes in Turku
A pilot bike sharing system (BSS), with 300 bicycles and 37 stations, has been implemented in Turku. This measure will provide the first BSS in the Turku area.
Development of a Mobility-Impaired Suitable E-Bike Sharing Scheme
The reduction of individual car use and the availability of multimodal mobility for everybody is a challenge for the future. The focus of this Use Case is on the development of a carrier e-bike for mobility-impaired people.
Peer-to-Peer (P2P) Car Sharing Platforms
GoMore and SnappCar are delivering Peer-to-Peer (P2P) car sharing platforms, making it simple to adopt a car-light lifestyle in the City of Stockholm.
Electrified Light Vehicles Integration into Transport and Electricity Networks
ELVITEN demonstrated the usefulness of light electrified vehicles for urban transportation. Its focus was on bicycles, scooters, tricycles and quadricycles (EL-VS).
On-Demand Mobility in Karlsruhe Region's Rural Areas
Integration of an on-demand service into the public transport system for residents of rural regions in Karlsruhe.
Optimisation and Digitalisation of an Existing Regular Service in Appenzell, Switzerland
After the initial launch the service was booked by over 16,000
passengers. The advance booking function in particular is very popular and has
been used for almost 90% of journeys. This allows residents and tourists in the
region to plan their journeys ahead of time and safely.
On-call company transport as a flexible and sustainable alternative to company cars
Thanks to digitalisation and optimisation, a total of 14 accessible vehicles have been successfully operating between the Bonn, Darmstadt and Frankfurt sites. Since then, the company transport service has offered Telekom employees a flexible and sustainable alternative to a company car.
Digitalised ASL/ALT Transport in Rural Areas
The new 'Wittlich Shuttle' can be booked on demand and via the app. It has been successfully in use since 2018 and has seen an increase in passengers of up to 400% compared to the previous city bus. Even during the Corona crisis, the concept has proven to be safe, needs-based and flexible.
Integrated on-demand mobility for a strong public transport system
The on-demand service has been successfully on the road since 2018 and was expanded to Billbrook in 2019. As a result, ioki Hamburg now not only improves the accessibility of public transport in the inner city, but also the connection in the surrounding areas (Stormarn and Harburg districts).
E-Scooter sharing service in Stockholm
To provide a new form of green micro mobility to Stockholm citizens, VOI introduced shared dockless electric scooter sharing service in the city.
Mobility Station in Mülheim
The Mobility stations in Mülheim provide commuters and residents of the busy district with a location, where they can easily find various alternative transport options. The aim is to encourage behavioral change from using cars towards more active modes of transport like walking and cycling.
Vehicle Sharing Service in Mülheim
With the aim of enabling road users to travel their routes using the environmentally-friendly transport network and to rely less on their own car, the car sharing facility in Mülheim offers a range of different vehicles. This includes e-cars, e-bikes and also normal cars for long distance.
Multifunctional Mobility Ticket in Cologne
A multi functional mobility app and ticket is launched in Cologne providing users of public transport the access to use shared cars, (e)-bikes, buses, trams etc. with one ticket. It is an enhancement of the existing subscription ticket enabling the travelers to also use the shared mobility services.
Public bike sharing system in Tartu
With the aim of encouraging the use of bicycles and make this a considerable alternative to cars, the city of Tartu has implemented a city wide bike sharing scheme as part of the SmartEnCity Project. The system consists of public city bikes, parking lots with safety locks and a management system.
Corporate Electric Car Sharing for University
The aim was to reduce staff using their own cars for university business, and to increase the use of Electric Vehicles at the Manchester Metropolitan University. The sharing scheme is managed by a third party enterprise through an online booking system.
Green Parking Index in Combination with EV Car Sharing Pool
The Green Parking Index in Stockholm is designed to encourage alternative forms of transport, thus reducing the demand for the private parking places which must be provided when building new and renovating old housing in Stockholm.
Shared E-Mobility System in Milan
Milan’s shared e-mobility system includes: e-cars, e-bikes, e-logistics vehicles, smart parking, e-vehicle charging, and condominium e-car sharing.
Station bound district car sharing
With the aim to improve the sharing of green mobility solutions, 3-5 sharing cars are operated by several contractors in Strijp-S, Eindhoven.
E-Car Sharing in social housing BWSG-Hauffgasse
E-Car sharing in the social neighbourhood is an innovative approach in the issue of e-mobility in social housing, contributing not only to the environmental goals but also to the community building as a strong societal element.
Want to see our expert's advice about this solution?
Log in