Privacy Notice

Welcome on BABLE

We put great importance to data protection and therefore use the data you provide to us with upmost care. You can handle the data you provide to us in your personal dashboard. You will find our complete regulations on data protection and clarification of your rights in our privacy notice. By using the website and its offers and navigating further, you accept the regulations of our privacy notice and terms and conditions.

Accept

Description

Smart water management aims to guide the utilisation of water in a manner that drives efficiency, sufficiency, and sustainability. To achieve this aim, contemporary management approaches are underpinned by the integration of innovative technologies, such as sensors, smart water metering, information systems, data acquisition and decision support systems.

As much as two-thirds of the global population may live in regions with limited access to freshwater resources by 2050, according to Statista (2021).  This report further argued that water shortages will also be felt in industrialized countries as climate change is leading to more frequent weather-related catastrophes and the increasing industrial demand for water is expected to put enormous pressure on freshwater accessibility.

Achieving water security, therefore, requires innovative ways to address the delivery of a clean and steady supply of water while optimising the operation, maintenance and management of water utility companies. Smart water management systems are one of the strongest interventions in achieving water security.

Benefits

Benefits show tangibly how implementation of a Solution can improve the city or place.

Smart water management systems capitalise on the application of technology to improve water allocation, support efficient water usage and drive the overall sustainable management of water resources. These systems collect, simulate and process data to optimise decision-making processes. If done right, then this could deliver up to £64 of benefit from each £1 spent (Artesia Consulting Ltd., 2019). The collected data sets are used to develop, test, evaluate, and drive possible interventions relating to water delivery, tariff arrangements, water policies, and the capacity and functioning of administrative structures. Benefits of water management systems include:

Main benefits
  • Improve water allocation

  • Support efficient water usage

  • Increase water security

Potential benefits
  • Reducing operation costs

  • Improving energy usage efficiency

  • Promoting sustainable behavior

  • Enhanced data collection

Functions

Functions help you to understand what the products can do for you and which ones will help you achieve your goals.
Each solution has at least one mandatory function, which is needed to achieve the basic purpose of the solution, and several additional functions, which are features that can be added to provide additional benefits.
Mandatory functions
    Enhance the efficiency of water systems

    Such as use of devices to detect water pressure, temperature, flow, etc to allow for early leakage detection, pipe damage, and other infrastructure maintenance issues. Consequently, faster execution of repairs, maintenance and general operational efficiency will minimise risks and offer investment protection.

    Support easy access and fast processing of information

    Such as smart metering provide access to real-time data related to water and associated energy consumption allowing opportunities to have a greater understanding of consumption (driving behavioural change), ability to integrate consumption data into smart networks for efficiency improvements as well as support the responsibilities and capacity of water service providers.

    Enhance customer experience

    With greater billing accuracy, portal apps for utility customers and improved infrastructure and supply, customers are expected to experience an improvement in water delivery service.

Potential functions
    Improve water quality

    The use of sensors and IoT technology facilitate real-time monitoring and control of water quality. Therefore, the entry of pollutants in water systems can be easily and quickly detected and addressed before reaching customers.

    Enhance environmental protection

    The water savings expected with more precisive metering, monitoring and management will reduce the financial, environmental and social cost associated with water abstraction processes.

    Generate new forms of governance

    The large volumes of data expected with smart water networks may generate many opportunities for app developers and private citizens that change the trajectory in which water is managed.

Variants

A variant is generally something that is slightly different from other similar things. In the context of Solutions, variants are different options or possibly sub-fields/branches by which the Solution may be implemented, e.g. different technological options.

There are varying components and methods to smart water management systems. Some of the main technologies are illustrated and described below.

(Jenny, 2020)

Description

A smart pipe is designed as a module unit with capacity for the installation of sensors allowing for the real-time monitoring and automatic detection of flow, pressure, leaks and water quality as well as without changing the operating conditions of the hydraulic circuit. An actuator is hardware through which the analysed data from the sensors are used to perform the resultant action of the water system.

Sensors such as the sensors are low-cost alternatives with a wide range of capabilities and versatility. Sensors and actuators are often paired together, for example, water flow sensor may be accompanied by an actuator such as a water shut-off valve to regulate the flow of water.

The main advantages are the continuous monitoring of the network without local operator intervention and with the low energy consumption of the wireless sensor.

Description

A smart meter is a measuring device that can store and transmit water consumption rates, which is made possible through the installation of sensors and/or actuators within the water systems. The advantages to smart metering are accessibility to consumption rates at long distances and quick access to real-time data for customers and water management companies.

Description

GIS is used to provide a complete list of components of the network and their spatial locations. The major advantage of GIS is the representation of data systems designed to collect, store, receive, share, manipulate, analyse, and present information that is geographically referenced. GIS is available from vendors such as ESRI, Hexagon AB, and Bentley Systems Incorporated.

Description

Cloud computing refers to the on-demand availability of shared resources such as networks, servers, storage, application, and analytical tools facilitated through the internet. SCADA systems are a control system architecture comprising computers, networked data communications, graphical user interfaces, sensors and other related devices for high-level supervision of machines and processes. It is configured to adapt to different workloads to drive operational optimisation and asset management.

Description

Refers to the implementation of a common framework for measuring the performance based on a set of relevant indicators and the use of relevant applications, tools and models supported by the acquisition of data generated throughout the smart water management network. The advantages of these systems are that they are used for explanation, forecasting and prescriptive tools to generate confidence, trust, and transparency for decision-making processes among stakeholders. 

Value Model

Cost-benefit assessment of the Solution.
BENEFITS ​
Economic ​Reduce water and associated energy consumption bill as customers are able to quickly access billing and usage information through a customer portal, apps and smart meters (Customers) ​
Operational optimisation will reduce costs associated with utility infrastructure (leakage, theft, etc.), personnel, and operational inefficiencies (automation of processes, data silos, etc.) ​
May generate employment associated with the development of apps based on large volumes of produced data  ​
Ensures the provision of a clean and steady supply of water to industries and commercial entities ​
Environmental ​Prevent biodiversity losses, water and air pollution and landscape damage related to water extraction projects and delivery services ​
Reduce GHG emissions relating to water delivery and energy use required for heating of water ​
Social ​Facilitates the provision of clean and steady water supply leading to the improved life quality ​
Real-time data sets and results of quick processing of large data sets are available to customers, utility companies, governmental officials and research institutions support transparency and foster effective decision-making, relevant research opportunities as well as the implementation of practical solutions ​

City Context

What supporting factors and characteristics of a city is this Solution fit for? What factors would ease implementation?

With the world’s population increasing by around 4-fold in the 20th century, human water consumption has increased by around 5, 18 and 10 times for agricultural, industrial, and municipal use, respectively (Makarigakas, 2019). As a greater percentage of the global population is expected to live in urbanised centres, there will be a pressing need, furthered by the impact of climate change and increasing pollution rates, for streamlining and augmenting urban water management systems.   

Supporting Factors

Use of technology: Technology is now largely applied in the distribution and regulation of services, goods and resources, particularly throughout the urban landscape. Sensor applications and wireless connections are ubiquitous within cities where there is a higher demand for the timely delivery of services, goods, and resources. 

Transparency: With the large volumes of data now being collected, citizen groups are demanding greater insights into resource usage and system performance.  Smart management systems facilitate the instantaneous and continuous means of data collection and processing. 

Tech-savvy Workforce: People entering the workforce are generally very dependent and comfortable with technology and are therefore expected to support existing technologies and develop newer practices.  

Opportunities for optimisation: Automation, real-time monitoring systems, and data-driven and model-based approaches enable the identification and prediction of system issues, thereby allowing an immediate response to potential infrastructural damage, service interruption, water contamination and other system failures.  

The Sustainability Agenda: Sustainability Development Goal 6 focuses on the accessibility to clean water and proper sanitation for all.  Smart water management is therefore not only a mechanism for cost-savings, and operational efficiency but a path to water security without jeopardising the integrity of the environment. 

Government Initiatives

What efforts and policies are local/national public administrations undertaking to help further and support this Solution?

There are several governmental initiatives on both regional and national fronts being used to support smart water management. Examples are provided below:

Cohesion Funds: Cohesion funds provide co-finance capital-intensive investment opportunities in water infrastructure and help EU Member States comply with water legislation. There are three different categories of funding covered that relate to water efficiency: 'Risk prevention', 'Other measures to preserve the environment and prevent risks', and 'Management and distribution of drinking water (European Union, 2021)

Life+ Funds (DG ENV): This funding scheme provides financial support for environmental & nature conservation projects throughout EU.

German Federal Ministry of Education and Research: This Ministry funds the development of integrated planning tools for the sustainable utilisation of water resources and the adaptation of water technologies to different environmental, social and economic conditions

Stakeholder Mapping

Which stakeholders need to be considered (and how) regarding the planning and implementation of this Solution?

Market Potential

How big is the potential market for this Solution? Are there EU goals supporting the implementation? How has the market developed over time and more recently?

The Global Smart Water Management Market is expected to register a CAGR of approximately 12.5% over the forecast period (2021 - 2026) (Morder Intelligence, 2022). Factors such as growing population, increasing urbanisation, ageing infrastructure and the implications of climate change on water resources are driving the worldwide growth of the market. For example, 480 million people in Asia are expected to face water scarcity in the future and over 500 million live in areas where water consumption exceeds locally renewable water resources by a factor of two (MordorIntelligence, 2022).

Roll-out of smart water management systems is often limited by the lack of funding to cover the high operation costs. Nonetheless, the global smart water meter market size was USD 1.38 billion in 2018 and is projected to reach USD 3.07 billion by 2026, exhibiting a CAGR of 10.6% during the forecast period (FortuneBusiness, 2020).

Germany is one of Europe’s largest exporters of water and wastewater technologies with an export volume of EUR 1.1 billion in 2018 (Germany Trade and Investment, 2019). The German market for sustainable water management is also among the largest in Europe with a water supply and wastewater treatment worth around EUR 17.2 billion annually (ibid). The US state of California is one region leading in the installation of smart water waters by cities' officials to help consumers improve the management of water consumption through access to real-usage data (SmartEnergy International, 2018).                                                                                      

It has been predicted that there will be a 3.5% growth in smart meter adoption between 2016 and 2022 in the Asia-Pacific as strong private sector investment will help increase the pace of smart meter penetration in the region (SmartEnergy Internationa, 2018). In Africa, on the other hand, smart water meters are still very much in the embryonic stage.

Cost Structure

Operating Models

Which business and operating models exist for this Solution? How are they structured and funded?

Varying operational models can be adopted for smart metering systems

Automatic switching: It would include retrofitting all existing household meters to be smart meters through governmental mandates.

Voluntary switching: This option is voluntary, therefore the adoption of smart meters would not require governmental intervention.  

Legal Requirements

Relevant legal directives at the EU and national levels.
  • The Urban Wastewater Treatment Directive (Directive 91/271/EEC): addresses the need for the collection, treatment and discharge of domestic wastewater, Wastewater from certain industrial sectors to eliminate the potential for adverse environmental effects.
  • The Drinking Water Directive (Directive 98/83/EC): addresses the need to protect human health from adverse effects of any contamination of water intended for human consumption by ensuring that it is wholesome and clean
  • The "Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for the Community action in the field of water policy" or, for short, the EU Water Framework Directive (WFD) expand the scope of water protection to all waters, surface waters and groundwater: achieving "good status" for all waters by a set deadline,
  • The Directive for Integrated Pollution and Prevention Control (IPPC), addresses the pollution from large industrial installations, later transformed into the Industrial Emissions Directive.
  • The Federal Water Act, Wastewater Charges Act, the Drinking Water Ordinance and the Wastewater Ordinance create the legal basis for transboundary and sustainable water management in Germany.

Data and Standards

Which relevant standards, data models and software are relevant to or required for this Solution?
  • European Water Stewardship Standards. These standards were developed by the European Water Stewardship within the stakeholder process coordinated by the European Water Partnership (EWP). The European Water Stewardship (EWS) operates within the context of EU Policy aims to give indicators for the whole water cycle: from extraction to re-allocation.
  • ISO/AWI 24591-2:  Data management guidelines  for service activities relating to drinking water supply, wastewater and stormwater systems

Use Cases

Explore real-life examples of implementations of this Solution.

Water

Glasgow Smart Canal Project

In its successful bid to be one of the Rockefeller 100 Resilient Cities across the world, Glasgow chose to focus on its plans for climate change resilience. This especially relates to increased rainfall and flooding, which are predicted local outcomes of global warming for the city-region.

Water

Management of São Paulo's water resources network

In 2020, the Basic Sanitation Company of the State of São Paulo (Sabesp) bet on the future of its society by incorporating Elliot Water to its management. Sabesp is responsible for 30% of the basic sanitation investments made in Brazil.

ICT

Water

Intelligent Tree Sensor Technology

Digital technology, in this case the use of sensors, will determine the water requirements of trees in Darmstadt in the future. In this way, water can be allocated more effectively and efficiently, and the preservation of urban greenery will be improved.

Energy

ICT

Water

Air

Building

Connecta VLCi: 194 smart municipal buildings and facilities

The project proposes a more modern and efficient management of up to 194 municipal buildings and facilities through a smart city platform where the buildings are integrated and all the information about them such as pollution, temperature, humidity, energy consumption, etc. is provided.

Water

TreeCop - Sensors control watering of urban trees in the city of Essen

In order to optimise irrigation management and preserve the tree population, the city of Essen has developed TreeCop, a smart watering management system for urban trees in 2020, together with the University of Trier.

Energy

ICT

Water

Other

Smart water utility solution

From the city of Stavanger Open data sources, sensor data, weather data and SCADA are streamed, and processed to see co-relation across data sources in real time which is used to maintain and identify improvements in the water and waste water system.

Water

Water Infrastructure Upgrade in Kranj, Slovenia

This Use Case highlights Iskraemeco Smart Water Solutions, which were implemented in Kranj Water Utility to increase operational efficiency and improve data accuracy.

Want to see our expert's advice about this solution?

Log in

Related solutions

Enhanced / Interoperable Internet of Things (IoT)

Enhanced / Interoperable Internet of Things (IoT)

The Internet of Things (IoT) is a constantly and rapidly evolving technological advancement that aims to increase the connectivity of our daily activities. IoT enables more effective and informed decision-making through improved data analysis and increased interconnectedness.

Building Energy Management System

Building Energy Management System

According to the Energy Performance of Buildings Directive (EPBD), buildings are responsible for approximately 40% of energy consumption and 36% of CO2 emissions in the EU.

Municipal Energy Saving Systems

Municipal Energy Saving Systems

The supply of energy to households, public buildings and services accounts for the majority of GHG emissions in the majority of municipalities. Municipal Energy Saving Systems represent punctual solutions to optimise energy consumption.

Smart Rainwater Harvesting

Smart Rainwater Harvesting

Smart Rainwater Harvesting is used to store the rainwater for any future purposes by incorporating a smart water managent system. Smart Rainwater Harvesting will gain the ability to store the excess water in a smarter way by utilizing technology, such as sensors and data processors.

Urban Resilience

Urban Resilience

Urban resilience is the ability of an urban system and all its constituents across temporal and spatial scales to maintain or rapidly return to desired functions in the face of a disturbance.

Something went wrong on our side. Please try reloading the page and if the problem still persists, contact us via support@bable-smartcities.eu
Action successfully completed!