Privacy Notice

Welcome on BABLE

We put great importance to data protection and therefore use the data you provide to us with upmost care. You can handle the data you provide to us in your personal dashboard. You will find our complete regulations on data protection and clarification of your rights in our privacy notice. By using the website and its offers and navigating further, you accept the regulations of our privacy notice and terms and conditions.

Accept

Description

Delivery trucks for parcels are a noticeable part of urban traffic that can be reduced by implementing a drone delivery system. As the market for deliveries is significantly and steadily growing, especially due to the increasing options in online shopping, this becomes even more relevant. Likewise, the delivery market slowly transforms from a mainly B2B market to a B2C market. These developments lead to the increasing importance of the so called ‘last mile’ – the delivery from the closest transportation hub to the final destination. One opportunity to improve the last mile delivery are drones. Autonomous drones can significantly accelerate delivery times and reduce the human costs associated with the delivery.

Benefits

Benefits show tangibly how implementation of a Solution can improve the city or place.

The main goal of the Drone Delivery System is to relieve the urban traffic and likewise increase the service of delivery services. Besides that, the solution achieves the benefits listed below. Whereas some benefits are likely to be fulfiled with a basic implementation of the solution, the fulfilment of the potential benefits depends on the functions implemented in a specific project.

Main benefits
  • Reducing need for travel

  • Improving personnel efficiency

Potential benefits
  • Reducing operation costs

  • Improving health care

  • Improving life quality

  • Reducing local air pollution

  • Improving traffic management

Functions

Functions help you to understand what the products can do for you and which ones will help you achieve your goals.
Each solution has at least one mandatory function, which is needed to achieve the basic purpose of the solution, and several additional functions, which are features that can be added to provide additional benefits.
Mandatory functions
    Moving the parcel via drone

    Products that allow parcels to be moved via drone

    Planning the delivery routes

    Products that allow to plan and optimize the routes of the drones delivering parcels

    Loading the drones

    Products that are able to be attached easily to the drones, such as suitable parcels or packaging

    Charging the drones

    Products or methodes that enable the operator to charge or refuel the drones

    Informing customer about arrival time and unloading

    Products that help to inform the customer about the service and other information, such as arrival time and unloading

Potential functions
    Moving the drones via truck

    Products that allow the operator to move the drones towards their optimal starting point

    Moving parcels via truck

    Products that bring the parcels close to the drones and their optimal starting point

    Optimizing the operation of the delivery fleet

    Products that enable the operator to constantly optimize the operation of the delivery fleet, e.g. including trucks and drones

    Informing customer about arrival time and unloading

    Products that help to inform the customer about the service and other information, such as arrival time and unloading

Operating Models

Which business and operating models exist for this Solution? How are they structured and funded?

Modes of operation:

  • Central distribution centres: All drones depart from a central distribution centre delivering on parcel at the time. For recipients out of the range or too heavy for the drones, traditional ways of delivery are used (b). The partly use of traditional delivery can be optimizes as recipients on the way of the traditional delivery truck might be served more efficiently by the truck than by drones (c). To compare the different delivery modes, (a) shows a traditional delivery system via truck. (Murray, Chase C.; Chu, Amanda G., 2015)

                        

  • Delivery truck as drone base: Especially in cases where the distribution centre is located far from the customers, an alternative is to pair the drone delivery system with a traditional delivery truck (b). The delivery truck transports all the parcels and the drones from the distribution centre closer to the recipients. Depending on the optimal route of the truck, part of the parcels are delivered via drones. The drones start and land on the truck. The truck can change its position while the drone delivers the parcel. The driver needs to load packages, replace batteries, and to recover the drones to be secured aboard the truck while in transit. (Murray, Chase C.; Chu, Amanda G., 2015)

                           

Cost advantage:

Due to the Business Insider drone deliveries will translate to instant cost savings, part of which will be passed on to consumers. Mainly in developed countries, it costs far less to operate a fleet of unmanned aerial vehicles than it does a fleet of ground vehicles. Due to a calculation conducted by Raffaello D'Andrea, who cofounded Kiva Systems (the warehouse robots used by Amazon), it costs 10 cents to deliver a 2 g package over almost 10 km using a drone. That's far cheaper than the $2 to $8 per package that it costs Amazon today using ground transportation for deliveries over this "last mile."

Passing the achieved cost savings in delivery to the customers, can increase the market share of an e-commerce company significantly, as "higher than expected shipping costs" are the top reason why consumers abandon a shopping cart online. (Smith, 2015)

The graphic below shows the delivery costs per shipment via drone. The calculation bases on research of the ivey business review on Amazon’s delivery system. The calculated costs vary depending on the market share of drone delivery / the year and the investment costs per drone. (Menon, Prashon, 2013 – how many drones does amazon need?)

For such a big e-commerce company as Amazon and less than $500 investment costs per drone all calculated costs are far below the traditional shipping costs, which are $ 2.1 in average.

Pilot projects: Currently Amazon is running a local trial Amazon Prime Air in Cambridge, England and DHL experiments on Drone Delivery Systems in Germany. DHL uses different drones depending on the local environment. The following image shows the technical details of the three drones which are currently used.

VIDEO: www.edge-cdn.net/video_1046346

Market Potential

How big is the potential market for this Solution? Are there EU goals supporting the implementation? How has the market developed over time and more recently?

Market Overview:

The drone delivery system can be part of the parcel delivery market. The total global cost of parcel delivery, excluding pickup, line-haul, and sorting, amounts to approximately EUR 70 billion. Whereas, China, Germany, and the United States account more than 40 percent of the market. However, the market is not just large, it is also highly dynamic. The grow rates differ in different countries. The current major markets, which are mainly developed countries such as Germany or the US, have growth rates ranging between 7 and 10 percent. Developing markets such as India otherwise reach growth rates of almost 300 percent. (McKinsey, 2016)

Even if drones can only handle parts or niches of the parcel delivery market, as discussed below, the global market potential is still significant. The market received a lot of attention from the start-up scene. The graphic below shows 308 of these start-ups clustered the type of delivery they focus on.

The graphic shows that most start-ups work on solutions for food delivery. A lot of investors are also interested in drone delivery systems - from 2011 to 2016 for example, young companies in this market have attracted funding just short of USD 10 billion. (McKinsey, 2016)

Possible Target groups:

  • Premium fast delivery: According to a large-scale survey, McKinsey conducted in China, Germany, and the US with a total of 4,700 respondents (1,500+ in each of the three countries), 25 percent of the customers would pay an additional fee, up to 3 €, if their parcel is delivered at the same day. Anyway, 70 percent of the people that contributed to the study would choose the cheapest option. (McKinsey, 2016)
  • Grocery delivery: The grocery sector is the only sector within the survey named above where more than 25 percent of the customers are willing to pay additional fees for faster delivery. On the other hand, some people also said that especially in e-groceries they still want crates to be carried up to their apartments and returns to be handled directly. (McKinsey, 2016)
  • Medical products: Such as groceries medicine is also a product where the delivery time can be of high importance. One example for an already implemented medical delivery system via drones is Zipline in Rawanda, where blood is delivered to rural hospitals.
  • Small and private buildings: As in high rise or business building several parcels can be delivered at once, the cost advantage of the parcel delivery system decreases. Due to calculations based on Research of McKinsey, the break-even point between traditional and drone delivers is reached at an average drop factor of 10 to 15 parcels per location. For this calculation personnel cost have been estimated as 20 Euro per hour. (McKinsey, 2016)
  • Areas with high labour costs: Due to McKinsey’s calculations drones deliver a cost benefit mainly in avoiding personal costs. Therefore, they can create a cost advantage compared to the traditional delivery system in countries with labor costs above 10 to 12 Euro per hour. That is the case in more or less the entire developed world. (McKinsey, 2016)

Requirements:

  • Weight of the parcel: Currently, drones can only deliver parcels up to 5 kg. (McKinsey, 2016) Amazon indicates that 86% of its deliveries weigh less than this restriction.
  • Length of delivery route: Instant service can only be economically viable if the right product is available in the proximity of the recipient, which excludes many rural areas from this service. For commercial products, only for distances beneath 5 to 10 km the additional costs are accepted. (McKinsey, 2016) The Prime Air drone, for example, has a range of 10 miles (Gross, 2013). Thus, the distribution centre needs to be close to the recipients.

Technical issues:

  • Currently, most drones rely on GPS, which has a limited accuracy of about 10 m without corrective technologies (Arnold and Zandbergen, 2011).
  • Due to the limited length of the delivery routes, the operation in urban areas are an efficient area for the drone delivery system. A main problem that occurs with GPS signals in urban areas, is the risk to lose signal in so called urban canyons. As such, there is increased interest in localization and navigation approaches that enable drones to function in GPS-denied environments (Clark and Bevly, 2008; Marais et al., 2014)
  • Another risk of navigating drones is the risk of hijacking (Humphreys, 2012; Faughnan et al., 2013)
  • The batteries of the drones currently limit the length of the delivery routes massively (Gross, 2013)

Environmental and Social Issues:

  • Heavy rain resilient and withstand damage from bad weather and animals (Murray, Chase C.; Chu, Amanda G., 2015)
  • Noise pollution (Murray, Chase C.; Chu, Amanda G., 2015)
  • Shooting down of drones (Gross, 2013)

Supporting Factors

  • IT infrastructure: to guide the drones through the daily traffic
  • GPS accuracy

Legal Requirements

Relevant legal directives at the EU and national levels.

EU: 

  • No legally binding regulation yet. A regulation has been under development by the European Aviation Safety Agency (EASA) since 29/11/17.
  • Currently, drone operators must be registered if they operate drones which can transfer more than 80 Joules of kinetic energy upon impact with a person. 
  • First draft here: data.consilium.europa.eu/doc/document/ST-5218-2018-INIT/en/pdf
  • Intention: ensure safety, security, privacy and the protection of personal data

USA:

  • States, Countries and Cities mostly have additional own regulations.
  • FAA’s Part 333 Exemption for commercial drone operation:
    • Operating beyond sight line possible, but not with other people’s property.
    • This is only granted for certificated pilots or if you stay 500 ft away from non-participating people.
  • FAA’s Part 107 drone regulation: 
    • Drones carrying mail are not allowed to cross state or national borders.
    • Drones must be in line sight of the pilot.
    • A remote pilot is necessary.
    • A remote pilot can only operate one drone at a time.
    • The drones cannot be operated from a moving vehicle.
    • No operating near airports (most parts of a city excluded!).

Related solutions

Urban Resilience

Urban Resilience

Urban resilience is the ability of an urban system and all its constituents across temporal and spatial scales to maintain or rapidly return to desired functions in the face of a disturbance.

Citizen Engagement

Citizen Engagement

Citizen engagement plays an instrumental role in the way human settlements are governed. Decision-making processes are enhanced by engaging those most affected and intimately connected with societal challenges.

Bi-directional Electric Vehicle Charging

Bi-directional Electric Vehicle Charging

Bi-directional electric vehicle (EV) charging refers to EV chargers that allow not only for charging the battery of the EV but also for taking energy from the car battery and pushing it back to the grid when needed.

Last Mile Delivery

Last Mile Delivery

Online sales have become an essential part of retail business in recent years. Consequently, the volume of traffic caused by delivery services has increased rapidly. What impacts cities most is the final track of the supply chain, the so called Last Mile Delivery.

Electrification of Fleets

Electrification of Fleets

Electrification of fleets integrates electric vehicles (EVs) into companies and cities, reducing transport-related CO2 emissions. Depending on the characteristics of the fleet and its users, different options for electrification are most beneficial.

Something went wrong on our side. Please try reloading the page and if the problem still persists, contact us via support@bable-smartcities.eu
Action successfully completed!