Peer to Peer Energy Trading
Sectors :
Description
The goal of peer-to-peer (P2P) energy trading is to make renewable energy more accessible, while empowering consumers to make better use of their energy resources. It works by creating an online marketplace where prosumers who produce their own electricity through distributed energy resources (also called self-consumers) and consumers can trade electricity at an agreed upon price.
P2P trading helps the grid by lowering reserve requirements, providing ancillary services, and reducing peak demand, while also saving citizens money on their electric bills. Trading power locally eliminates most transmission costs and allows prosumers to sell energy at a greater profit than if it were sold back to the grid, as is currently the standard. By limiting utility involvement in transactions, P2P models enable buyers to save costs and sellers to make greater profit. They also empower customers to choose where their electricity is sourced from.
Problems to be solved
Growing energy consumption | High cost of energy | High transmission and infrastructure costs | Rising demand for renewables | Limited energy access to consumers in mini-grid set-ups |
Benefits
The main goal of P2P Energy Trading is to increase the use of local renewable energy by enabling prosumers to trade energy easily. Additionally, it can also decrease transmission losses and energy costs while stabilizing the grid. Whereas some benefits are likely to be fulfilled with a basic implementation of the solution, the fulfillment of the full scope of potential benefits depends on the functions implemented in a specific project.
Main Benefits
Reducing energy bills
Reducing use of fossils
Increasing share of renewables
Functions
Functions help you to understand what the products can do for you and which ones will help you achieve your goals.
Each Solution has at least one mandatory function, which is needed to achieve the basic purpose of the Solution, and several additional functions, which are features that can be added to provide additional benefits.
Mandatory Functions
Potential Functions
services, that allow the user to get information about how to become a prosumer and where their energy is consumed/generated
services, that support prosumers in the implementation of PVs or other sources of reneable energy
Variants
There are different options to implement P2P energy trading - the difference mainly is based on the level of indepence of the established grid.
Description
Participating peers independently and directly negotiate with each other to buy and sell electric energy. Blockchain based smart contracts may be used to facilitate trading, but P2P markets are also possible without.
Figure 1. Fully Decentralised Market (Sousa, 2019)
Supporting City Context
Microgrid setup that includes a subgroup of prosumers e.g. houses with PV systems
Description
Each member trades energy within the community or energy collective through a community manager. The community manager can also manage trades with external systems.
Figure 2. Community-based Market (Sousa, 2019)
Supporting City Context
This can be applied to microgrids or to a group of neighbouring prosumers. Members with common green energy sharing goals need to be able to form community.
Description
A combination of fully decentralised and community-based markets in that prosumers can individually engage in P2P trading with managed energy collectives in a more nested market design.
Figure 3. Hybrid Market (Sousa, 2019)
Stakeholder Mapping
Stakeholder Map
The following graphic shows the goals, the relations as well as possible pain points of the key stakeholders of P2P energy trading.
Business Model
Market Potential
The market is very young, and still faces regulatory obstacles in most countries. Nevertheless, in the last decade several R&D projects have been carried out, with numerous start-ups emerging. These include companies that allow P2P exchange of surplus energy- LO3 Energy, SonnenCommunity, Hive Power, OneUp, Power Ledger- and companies that allow prosumers to directly choose local renewables- Vandebron, Electron, Picl5, Dajie, Powerpeers.
One can only speculate on market or customer growth forecasts for P2P trading at this early stage of the potentially disruptive industry. However, there are data for two industries that are critical to enabling the formation of P2P markets- distributed generation and smart grids. The global distributed generation market size is expected to grow from USD 58,904.20 Million in 2019 to USD 118,898.35 Million by 2025 at a compound annual growth rate (CAGR) of 12.41% during the forecast period. The smart grid market size is expected to grow from USD 23.8 billion in 2018 to USD 61.3 billion by 2023, at a Compound Annual Growth Rate (CAGR) of 20.9% until 2023. (markets&markets; prnewswire)
Required Infrastructure & Costs
Driving Factors
The key supporting factors of P2P energy trading are:
- Reliable platform
- Good customer service
- Conducive regulatory framework
- Reliable grid
City Context
Legal frameworks remain the primary obstacle in most countries around the world as direct P2P energy exchanges are commonly prohibited. This is not the case in the European Union, but some member states have more supportive regulatory regimes than others.
Microgrids are important enablers of P2P markets as they bring technologies and infrastructure in the critical areas of communication, monitoring and control.
Legal Requirements
Government Initiatives
- Policies supporting the implementation of such solutions (EU-level or national level)
- EU Directive 2018/2001
- “‘peer-to-peer trading’ of renewable energy means the sale of renewable energy between market participants by means of a contract with pre-determined conditions governing the automated execution and settlement of the transaction, either directly between market participants or indirectly through a certified third-party market participant, such as an aggregator. The right to conduct peer-to-peer trading shall be without prejudice to the rights and obligations of the parties involved as final customers, producers, suppliers or aggregators.”
- Article 21: Member States shall ensure that consumers are entitled to become renewables self-consumers, subject to this Article.
- Self-consumers are entitled to… sell their excess production of renewable electricity, including through… peer-to-peer trading arrangements, without being subject:
- in relation to the electricity that they consume from or feed into the grid, to discriminatory or disproportionate procedures and charges, and to network charges that are not cost-reflective
- in relation to their self-generated electricity from renewable sources remaining within their premises, to discriminatory or disproportionate procedures, and to any charges or fees
Data Standards
- Required hardware:
- Smart meters and grids
- ICT network and EMS
- Required software:
- Platform for P2P electricity trading
- Advanced power demand and supply forecasting analysis
- Robust data analytics tool
- Algorithms/blockchain for automated execution of P2P transactions and reduced transaction costs
Use Cases
NRGCoin
The NRGcoin mechanism replaces traditional high-risk renewable support policies with a novel blockchain-based Smart Contract, which better rewards green energy. For every 1kWh of green energy consumers pay 1 NRGcoin directly to the Smart Contract, protecting prosumers from policy changes.
Sustainable Energy Management Service (SEMS)
This measure involves the development of an advanced, data-rich, management system which gains maximum benefits from the retrofitted buildings, sharing energy data through the open platform enabling energy services to be provided that reduce energy use and bills.

Smart energy and self-sufficient block
The smart energy and self-sufficient block aims to reduce electric consumption in tertiary buildings through renewable energy, especially photovoltaic.

Smart City Central Energy Controller
A Virtual Power Plant energy management platform, providing the capability to city stakeholders to actively manage Distributed Energy Resource (generation, storage and load) from a single platform.