Privacy Notice

Welcome on BABLE

We put great importance to data protection and therefore use the data you provide to us with upmost care. You can handle the data you provide to us in your personal dashboard. You will find our complete regulations on data protection and clarification of your rights in our privacy notice . By using the website and its offers and navigating further, you accept the regulations of our privacy notice and terms and conditions.

OK

Main Benefits

  • Promoting sustainbable use of land

  • Reducing Operation Costs

  • Reducing local air pollution

  • Reducing soil pollution

  • Reducing waste generation

  • Reducing water pollution

Functions help you to understand what the products can do for you and which ones will help you achieve your goals.
Each solution has at least one mandatory function, which is needed to achieve the basic purpose of the solution, and several additional functions, which are features that can be added to provide additional benefits.

Mandatory Functions

    remediating soil

    remediating surface and groundwater

    remediating air

Potential Functions

    reusing and recycling infrastructure
    generating energy from remediation process
    generating local energy to enable remediation process
    restoring areas ecologically

Business Model

Market Overview

An advantage of investing in site remediation is that many of these brownfields have a central location and a close connection to the transport system. At the same time, after the remediation, the site can be sold or be used to construct buildings and houses. Additional incentives are government programs and funding, and the monetary compensation from the polluter.

Polluter pays principle: Whoever causes an environmental damage through their activities is financially liable for its remediation. (Directive 2004/35/EC, 2004)

 

A-B-C Model 

There are three types of brownfields accordingly to the CABERNET (Concerted Action on Brownfield and Economic Regeneration) Network: Type A, Type B, and Type C. Type A are areas which their land price is higher than the remediation costs. Private actors usually carry these projects. Type B includes areas which their property value is close to the remediation costs. Therefore, the participation of the state is required to make projects viable. Type C are all the zones whose remediation costs are higher than the property value after the remediation. Public actors implement projects in these sites.

(NICOLE Brownfield Working Group, 2011)

 

Example USA, Monterey Park

  • Cleanup Objectives: Remediate soil and water contaminated by a 145-acre inactive landfill
  • Green Remediation Strategy: Convert landfill gas to electric power for onsite use

 

Within the project six 70-kW microturbines have been installed in 2002 as part of the landfill gas collection system. These are able to convert a flow rate of 5,500 standard cubic feet per minute. The system returns microturbine emissions to the existing gas treatment system to ensure contaminant removal. The system generates sufficient energy to meet approximately 70% of onsite needs including thermal oxidation, a 40-horsepower gas blower, refrigeration units, and air-exchange systems. The implementation saves up to $400,000 each year in grid-supplied electricity expenses. (U.S. EPA/OSWER, 2007) 

Driving Factors

Subsidies

Government expenditures are a relevant part of the funds for the management of contaminated sites. Depending on the country, its relation to costs for private actors varies. For example, funds for this activity in Estonia come 90% from the government, while in contrast in Belgium this accounts for 25%. Considering the countries in the graph, an average of 42% of the total expenditure for contaminated sites management comes from public funds.

Additionally, seventeen European countries count with funding mechanisms for “orphan” polluted sites. Orphan polluted sites are sites with no party responsible for the remediation. These countries are Austria, Belgium, Croatia, Cyprus, Czech Republic, Estonia, Finland, France, Hungary, Ireland, Italy, Netherlands, Norway, Slovakia, Sweden, Switzerland, and the United Kingdom.

 (European Environment Agency, 2014)

 Government Initiatives

According to the European Environment Agency, it is estimated that in Europe exist 2.5 million potentially contaminated sites, and from those, about 14% (34,0000 sites) are highly likely to be contaminated. (European Environment Agency, 2014). Estimations might vary because of federal definitions of brownfield and contaminated sites, and availability of national statistics.

Estimations might vary because of federal definitions of brownfield and contaminated sites, and availability of national statistics.

As it's a current problem for all European countries, most of them have regulations regarding soil management and remediation. In the following table, national policies and targets are presented for some European countries.

Link to full table (on the bottom of the site)

Legal Requirements

Regulations

  • Treaty on the Functioning of the European Union, article 191: Polluter pays principle
  • Directive 2000/60/EC: framework for Community action in the field of water policy
  • Directive 2004/35/EC: on environmental liability concerning the prevention and remedying of environmental damage
  • Directive 2006/118/EC: on protection of groundwater against pollution and deterioration
  • EU Soil Protection Strategy: on sustainable management of soil and remediation.

Use Cases

Sustainable Energy Supply by Soil Sanitation
SANERGY is a low-cost system which aims at purifying soil in combination with extracting energy from groundwater using heat pumps in the Strijp-S district in Eindhoven.

Related Solutions

Green Remediation
Within the EU there are several brownfields with polluted soil, water or air. A significant number of them have a central location and connected to the transport system. Green Remediation is a solution which remediates these brownfields and enables the use of these areas.
Intelligent Waste Logistics
The global amount of waste produced is steadily rising. With the amount of waste, the importance of an efficient processing of waste grows. Intelligent waste logistic covers the waste chain from the pick-up of the waste at the inhabitants' place to the processing of recycling and destruction.
Waste separation at source
In 2017, 70 percent of the global waste has been generated in cities - and a rising trend is expected in the next years. One step to efficiently and economically process this waste is the waste separation at source.