Privacy Notice

Welcome on BABLE

We put great importance to data protection and therefore use the data you provide to us with upmost care. You can handle the data you provide to us in your personal dashboard. You will find our complete regulations on data protection and clarification of your rights in our privacy notice . By using the website and its offers and navigating further, you accept the regulations of our privacy notice and terms and conditions.

OK

Description

Today in Europe, 25% of total GHG emissions are linked to transport with 8% of the total emissions produced by buses. Therefore, transport systems like Electric Bus Systems are a way to reduce the emissions and improve quality of transport and living.

(UITP, 2019)

The Electric Bus System is a public transportation system that is operated by electric buses only. As every public transportation system, it can include ticketing, information of customers and a monitoring system.
Additionally, facilities to charge the electric buses are mandatory. Due to the charging process, a management system for operation and planning of range as well as route optimisation is even more important than it is with conventional bus systems. (see also SCIS)

Problems to be solved

 

Bad air quality

High Costs

Noise

Lack of Comfort

In comparison to conventional engines, Electric Bus Systems are free of emissions locally. Moreover, less noise is produced when driving. While the initial costs for purchasing electric buses may be higher, the overall costs of Electric Bus Systems can be lower than the one of other systems depending on the usage.

Benefits

The main goal of the Electric Bus System is to reduce the local air pollution within cities. Besides that, the solution achieves the benefits listed below. Whereas some benefits are likely to be fulfilled with a basic implementation of the solution, the fulfilment of the potential benefits depends on the functions implemented in a specific project.

Main Benefits
  • Reducing use of fossils

  • Promoting sustainable behavior

Potential Benefits
  • Promoting sustainable private transport models

  • Reducing GHG emissions

  • Reducing local air pollution

Functions

Functions help you to understand what the products can do for you and which ones will help you achieve your goals.
Each Solution has at least one mandatory function, which is needed to achieve the basic purpose of the Solution, and several additional functions, which are features that can be added to provide additional benefits.

Mandatory Functions
    moving passenger by bus

    public transportation

    paying bus service

    digital option for payment

    charging electric buses

    providing charging stations

Potential Functions
    monitoring bus system

    management to optime functionality

    informing passengers about bus system

    communicate benefits and technology

Variants

Aside from bus systems that do not exclusively use electricity (hybrid systems), there are three main variants for Electric Bus Systems (powered by battery with night-charging, opportunity charging or buses with a fuel cell). Moreover, there can be further differentiation depending on the charging system (plug-in charging, docking), battery types (e.g., Lithium-Ion technology (LFP, NCM/NCA, Li-Titanate)), etc.

(Fraunhofer MOEZ, 2015)

Description

The battery of the bus is charged once a day – usually at night at charging stations in the depot. These buses are suitable for shorter daily distances (ca. 100-200km).

(emcel, 2016, mobil.nrw, 2021)

Description

These buses have a smaller battery that is charged occasionally – mostly at the last stop of every route. They can be used on long daily distances (ca. 300km). Because of the charging process, they normally need longer at the last stop and require close substations. New technologies increase the efficiency of such charging processes, e.g.  fast charging or recovery of break energy (e.g., 1MW chargers with 400kW chargers already in place).

(emcel, 2016, mobil.nrw, 2021)

Description

The bus produces the energy for the electric propulsion with its own fuel cell and hydrogen that is carried in a tank. The system suits long daily distances. A hydrogen infrastructure is needed at the depot.

(emcel, 2016, mobil.nrw, 2021)

City Context

Additional infrastructure like charging stations or hydrogen infrastructure are needed depending on the variant implemented.

The efficiency and the necessity of Electric Bus Systems are linked to restrictions that are implemented on city or higher political level. Electric Bus Systems are expected to be supported by national and international policy and funding in future.

In general, regulations on emissions are introduced in the sector of buses first, before introducing the regulations for cars. Therefore, a diesel ban in urban areas is expected to be introduced for buses first.

The regulation (EU) 2019/1242 sets CO2 emission standards for heavy-duty vehicles. From 2025 on, manufacturers have to reduce emissions 15% compared to EU average in the reference period (1 July 2019- 30 June 2020). From 2030 onwards, there has to be a 30% reduction.

(European Commission, 2020)

Supporting Factors

A strong energy grid, which can be used for charging by the electric buses, simplifies the implementation of this solution. Besides this, it is recommended to invest in sustainable and local energy generation to reduce energy costs and increase the environmental benefit of the Electric Bus System. A local smart grid supports balancing loads.

Government Initiatives

  • The EU invests €2.2 billion in 140 key transport projects which also include electric bus projects. The projects will be supported through the Connecting Europe Facility (CEF) and are part of the efforts to fulfil the European Green Deal.
  • Most e-buses which are currently in operation are supported by local governments as a part of a pilot project. In Germany there is a funding program called “Anschaffung von Elektrobussen im öffentlichen Personennahverkehr” that helps to buy or lease buses with electric or hybrid propulsion. The total national funding adds up to €650 million.

(electrive.net, 2020, Federal Ministry for Economic Affairs and Energy, 2020, European Commission, 2020)

Stakeholder Mapping

Stakeholders in electric bus systems (BABLE, 2021)

Market Potential

In 2019, there were about 3.000 electric buses in Europe and the United States, which only represents 1% of all buses. However, a rapid growth is predicted for the next years and is highly driven by legal regulations and government initiatives. Cities like Paris, Moscow or Berlin are planning to purchase hundreds of new electric buses in the upcoming years.

Global municipal e-bus fleet (Consultancy.eu & Bloomberg, 2020)

The number of electric buses in Germany since 2009 shows a huge development and forecasts predict a further rise in electric buses for the future.

Development of electric buses in Germany since 2009 (PwC, 2020)

Cost Structure

High investment costs of electric buses in comparison to conventional (diesel) busses can be balanced with lower operational costs and longer lifespans (e.g., image Proterra). Some operators produce their own regenerative energy for the buses. The profitability of e-buses will increase as soon as there are stricter emission regulations or even diesel bans in urban areas. Restrictions are expected to be introduced in various European cities within the next few years.

Example Proterra

The graph shows the profitability of the operation of electric buses in comparison to other buses over a lifetime of ten years. The data is obtained out of manufacturer specifications from Proterra, who - as of March 2017 - is one of three e-bus manufacturers providing buses on large scale. According to this calculation, electric buses are cheaper despite higher investment costs since costs for fuel and maintenance are much lower compared to traditional buses.

Comparison of total cost of ownership (Proterra, 2021)

This calculation does not include the infrastructure of charging stations needed which is often the actual challenge. Depending on the technology, the infrastructure can cost a multiple than the implementation costs of the buses. The tendering process should be suitable for an economic construction of the infrastructure. One solution could be that the municipality provides the infrastructure, and the bus operators provide only the buses.

Regulations

  • Directive 2009/33/EG: Clean Vehicles Directive: directive to encourage clean and energy-efficient vehicles (EUR-Lex, 2021)
  • Regulation (EU) No 582/2011: update to Directive (EG) no 595/2009, regarding emissions of heavy-duty vehicles (EUR-Lex, 2021)
  • VO(EG) 595/2009: on type approval of heavy-duty vehicles (EUR-Lex, 2021)
  • UN-R49 regulation: regarding measures against emissions of engines used for transport (EUR-Lex, 2021)
  • 2007/46/EG: Regulations on busses in general (EUR-Lex, 2021)
  • RL 2001/85/EG (EUR-Lex, 2021) and UN-R66 (EUR-Lex, 2021): Security Regulations for Buses
  • UN-R100: Security Regulation for electric vehicles (EUR-Lex, 2021)
  • Richtlinie zur Förderung der Anschaffung von Elektrobussen im öffentlichen Personennahverkehr, by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (beck-online, 2021)

The creation of this Solution has been supported by EU funding

Use Cases

CNG powered buses in the city of Tartu

With the aim of having 100% of public transportation buses in Tartu run on gas by 2019, the municipality has purchased 60 new biogas busses for the public transportation network.

Introduction of electric public transport

The City of Turku has introduced new electric buses in the public transport fleet to reach the goal of becoming CO2 neutral by 2029.

Electric and hybrid electric buses for public transport

At least six new electric buses were introduced to Madrid’s existing bus fleet and being tested in real-life conditions in the city’s living lab. The main goal is to use a clean bus fleet in areas which lack high-quality public transport service.

Related Solutions

Public Charging System for Electric Vehicles

The current EU regulation on emissions for cars is the strictest worldwide. Along with further restrictions the thresholds cannot be meet with conventional cars only anymore. One alternative technology, reducing the local emissions, are electric vehicles.

Bi-directional Electric Vehicle Charging

Bidirectional electric vehicle charging refers to EV chargers that allow not only for charging the battery of the EV but also for taking energy from the car battery and pushing it back to the grid when needed.

Last Mile Delivery

On-line sales have become an essential part of retail business in recent years. Consequently, the volume of traffic caused by delivery services has increased rapidly. What impacts cities most is he final track of the supply chain, the so called “Last Mile” delivery.

Electrification of fleets

One solution to reduce transport-related CO2 emissions is electric mobility. Depending on the characteristics of the fleet and its users, different options for electrification are most beneficial.

Mobility Hubs

Mobility Hubs are places of connectivity where different modes of transportation - from walking to rapid transit – come together seamlessly.

Drone Delivery System

Delivery trucks for parcels are a noticeable part of urban traffic that can be reduced by implementing a drone delivery system. As the market for deliveries is significantly and steadily growing, especially due to the increasing options in online shopping, this becomes even more relevant.

Smart Parking

A Smart Parking System makes use of sensors or other technologies to determine the availability of parking lots in cities. This information can be shared with drivers, reducing the time spent looking for parking, and thus reducing traffic congestion.

Bike Sharing System

A bike sharing system intends to provide a community with a shared fleet of bikes. Therefore, individual users do not have to own a bike, but rather everyone can use the fleet flexibly.

Vehicle Sharing System

Vehicle sharing systems allow customers to use various vehicles without the need to own each vehicle. There are different types of vehicle sharing systems on the market. Differences can include the type of vehicle shared, like car sharing, bike sharing, scooter sharing or electric vehicle sharing.