Datenschutzhinweis

Willkommen auf BABLE

Wir legen großen Wert auf den Datenschutz und verwenden daher die von Ihnen zur Verfügung gestellten Daten mit größter Sorgfalt. Sie können die Daten, die Sie uns zur Verfügung stellen, in Ihrem persönlichen Dashboard verwalten. Unsere vollständigen Regelungen zum Datenschutz und zur Klärung Ihrer Rechte finden Sie in unserer Datenschutzerklärung. Mit der Nutzung der Website und ihrer Angebote und der weiteren Navigation akzeptieren Sie die Bestimmungen unserer Datenschutzerklärung und der Allgemeinen Geschäftsbedingungen.

OK

Die Pilotphase von Bable@bw wird gefördert durch das Innen- und Digitalisierungsministerium Baden-Württemberg im Rahmen der Digitalalakademie@bw. Ziel ist die Unterstützung von Kommunen und Landkreisen bei Wissenstransfer und Innovationsprozessen für digitale Umsetzungsprojekte.

OK
Diese Seite wurde automatisch übersetzt. Für die englische Version, klicken Sie bitte hier.

Beschreibung

The goal of peer-to-peer (P2P) energy trading is to make renewable energy more accessible, while at the same time empowering consumers to make better use of their energy resources. It works by creating an online marketplace where prosumers who produce their own electricity through distributed energy resources (also called self-consumers) can trade electricity at an agreed-upon price with consumers.

P2P trading helps the grid by lowering reserve requirements, providing ancillary services, and reducing peak demand, while also saving citizens money on their electric bills. Trading power locally eliminates most transmission costs and allows prosumers to sell energy at a greater profit than if it were sold back to the grid, as is currently the standard. By limiting utility involvement in transactions, P2P models enable buyers to save costs and sellers to make a greater profit. They also empower customers to choose where their electricity is sourced from.

Problems to be solved

Growing energy consumptionHigh cost of energyHigh transmission and infrastructure costsRising demand for renewablesLimited energy access 

 

Nutzen

The main goal of P2P Energy Trading is to increase the use of local renewable energy by enabling prosumers to trade energy easily. Additionally, it can also decrease transmission losses and energy costs while stabilising the grid. Whereas some benefits are likely to be fulfilled with a basic implementation of the solution, the fulfillment of the full scope of potential benefits depends on the functions implemented in a specific project.

Hauptvorteile
  • Reduzierung der Energiekosten

  • Reduzierung des Verbrauchs von Fossilien

  • Steigender Anteil erneuerbarer Energien

Funktionen

Funktionen helfen Ihnen zu verstehen, was die Produkte für Sie tun können und welche Ihnen dabei helfen, Ihre Ziele zu erreichen.
Jede Lösung hat mindestens eine obligatorische Funktion, die erforderlich ist, um den grundlegenden Zweck der Lösung zu erreichen, und mehrere zusätzliche Funktionen. Diese Funktionen können hinzugefügt werden, um zusätzliche Vorteile zu bieten.

Obligatorische Funktionen
    Enable energy to be traded at a local scale

    P2P Energy Trading enables the trading of energy at a local scale

Mögliche Funktionen
    Informing prosumers

    Services that allow the user to get information about how to become a prosumer and where their energy is consumed/generated

    Supporting the installation of renewable energy sources in the district

    Services that support prosumers in the implementation of PVs or other sources of renewable energy

    Facilitate transactions using blockchain

    Services that enable to use blockchain for transactions

Varianten

There are various options for implementing P2P energy trading – the differences are mainly based on the level of independence of the established grid.

 

Beschreibung

Participating peers independently and directly negotiate with each other to buy and sell electric energy. Blockchain-based smart contracts may be used to facilitate trading, but P2P markets are also possible without such contracts.

Fully Decentralised Market (Sousa, 2019)

Rahmenbedingungen des Stadtumfeldes

Microgrid setup that includes a subgroup of prosumers (e.g. houses with PV systems). 

Beschreibung

Each member trades energy within the community or energy collective through a community manager. The community manager can also manage trades with external systems.

Community-based Market (Sousa, 2019)

 

Rahmenbedingungen des Stadtumfeldes

This can be applied to microgrids or to a group of neighbouring prosumers. Members with common green energy sharing goals must to be able to form a community.

Beschreibung

A combination of fully decentralised and community-based markets in that prosumers can individually engage in P2P trading with managed energy collectives in a more nested market design. 

Hybrid Market (Sousa, 2019)

Geschäftsmodell

Market Potential

The market for P2P Energy Trading is still very young, and still faces regulatory obstacles in most countries. Nevertheless, in the last decade, several R&D projects have been carried out, with numerous start-ups emerging. These include companies that allow P2P exchange of surplus energy- LO3 Energy, SonnenCommunity, Hive Power, OneUp, Power Ledger- and companies that allow prosumers to directly choose local renewables- Vandebron, Electron, Picl5, Dajie, Powerpeers.

One can only speculate on market or customer growth forecasts for P2P trading at this early stage of the potentially disruptive industry. However, there are data for two industries that are critical to enabling the formation of P2P markets – distributed generation and smart grids. The global distributed generation market size is expected to grow from USD 58,904.20 Million in 2019 to USD 118,898.35 Million by 2025 at a Compound Annual Growth Rate (CAGR) of 12.41% during the forecast period. The smart grid market size is expected to grow from USD 23.8 billion in 2018 to USD 61.3 billion by 2023, at a Compound Annual Growth Rate (CAGR) of 20.9% until 2023. (markets&markets; prnewswire)

Required Infrastructure and Costs

Required Infrastructure and Costs of a P2P Energy Trading System (BABLE, 2021)

Treibende Faktoren

The key supporting factors of P2P energy trading are:

  1. Reliable platform
  2. Good customer service
  3. Conducive regulatory framework
  4. Reliable grid

City Context

Legal frameworks remain the primary obstacle in most countries around the world as direct P2P energy exchanges are commonly prohibited. This is not the case in the European Union, but some member states have more supportive regulatory regimes than others.

Microgrids are important enablers of P2P markets as they bring technologies and infrastructure in the critical areas of communication, monitoring and control.

 

Rechtliche Anforderungen

Government Initiatives

Policies supporting the implementation of such solutions (EU-level or national level):

  • EU Directive 2018/2001
    • “‘peer-to-peer trading’ of renewable energy means the sale of renewable energy between market participants by means of a contract with pre-determined conditions governing the automated execution and settlement of the transaction, either directly between market participants or indirectly through a certified third-party market participant, such as an aggregator. The right to conduct peer-to-peer trading shall be without prejudice to the rights and obligations of the parties involved as final customers, producers, suppliers or aggregators.”
    • Article 21: Member States shall ensure that consumers are entitled to become renewables self-consumers, subject to this Article.
    • Self-consumers are entitled to…  sell their excess production of renewable electricity, including through… peer-to-peer trading arrangements, without being subject to:
      • in relation to the electricity that they consume from or feed into the grid, to discriminatory or disproportionate procedures and charges, and to network charges that are not cost-reflective.
      • in relation to their self-generated electricity from renewable sources remaining within their premises, to discriminatory or disproportionate procedures, and to any charges or fees.

Data Standards

  • Required hardware:
    • Smart meters and grids
    • ICT network and EMS
  • Required software:
    • Platform for P2P electricity trading
    • Advanced power demand and supply forecasting analysis
    • Robust data analytics tool
    • Algorithms/blockchain for automated execution of P2P transactions and reduced transaction costs

Stakeholder-Zuordnung

Stakeholder Map

The following graphic shows the goals, the relations as well as possible pain points of the key stakeholders of P2P energy trading.

Stakeholder Map of a P2P Energy Trading System (BABLE, 2021)

Die Erstellung dieser Lösung wurde durch EU-Finanzierung unterstützt

Anwendungsfälle

NRGCoin

The NRGcoin mechanism replaces traditional high-risk renewable support policies with a novel blockchain-based Smart Contract, which better rewards green energy. For every 1kWh of green energy consumers pay 1 NRGcoin directly to the Smart Contract, protecting prosumers from policy changes.

Dienst für nachhaltiges Energiemanagement (SEMS)

Diese Maßnahme umfasst die Entwicklung eines fortschrittlichen, datenreichen Managementsystems, das den größtmöglichen Nutzen aus den nachgerüsteten Gebäuden zieht, indem es Energiedaten über die offene Plattform teilt, so dass Energiedienstleistungen bereitgestellt werden können, die den Energieverbrauch und die Kosten reduzieren.

Intelligente Energie und autarker Block

Der intelligente Energie- und autarke Block zielt darauf ab, den Stromverbrauch in Dienstleistungsgebäuden durch erneuerbare Energien, insbesondere Photovoltaik, zu senken. 

Smart City Zentrale Energiesteuerung

Eine virtuelle Energiemanagement-Plattform für Kraftwerke, die den Interessengruppen der Stadt die Möglichkeit bietet, dezentrale Energiequellen (Erzeugung, Speicherung und Last) aktiv von einer einzigen Plattform aus zu verwalten.

Verwandte Lösungen

Energiemanagement-System für Gebäude

Der größte Teil der öffentlichen Mittel für die Energieeffizienz in der EU wird für den Gebäudesektor vorgeschlagen. Die Bundesmittel in diesem Bereich belaufen sich 2014 auf 5,4 Milliarden Euro. Eine Möglichkeit, die Energieeffizienz von Gebäuden zu erhöhen, ist die Implementierung eines Gebäudeenergiemanagementsystems (BEMS).

Lokales Energiesystem

Etwa ein Viertel des Energiepreises entfällt auf den Transport der Energie. Die Implementierung eines lokalen Energiesystems kann die Energieerzeugung von einem zentralen System auf ein dezentrales System verlagern.

Smart Microgrids

Microgrids are emerging as an attractive, viable solution for cities, utilities, and firms to meet the energy needs of communities by leveraging more sustainable resources, while increasing resilience, reducing emissions, and achieving broader policy or corporate goals.

Energy Storage Systems

Energy storage systems are used to store energy that is currently available but not needed, for later use. The goal is to create a reliable and environmentally friendly system. As the share of renewables increases, so does the need for storage. With storage, energy can be used when it is needed.

Bi-directional Electric Vehicle Charging

Bidirectional electric vehicle charging refers to EV chargers that allow not only for charging the battery of the EV but also for taking energy from the car battery and pushing it back to the grid when needed.

Energy Efficient Retrofitting of Buildings

Improving energy efficiency of the building stock in a city needs strategic and long-term thinking. Complex ownership structures, market barriers, diversity of building typologies, consumer preferences and multiple stakeholders involved makes energy efficient retrofitting a big challenge.

District Heating & Cooling Systems

State-of-the-art district heating and cooling systems are paving the way for municipalities to reduce overall carbon emissions and to speed up the energy transition through the efficient distribution of heat and cold from renewable energy sources.

Municipal Energy Saving Systems

The supply of energy to households, public buildings and services accounts for the majority of GHG emissions in the majority of municipalities. Energy Saving Systems represent punctual solutions to optimise energy consumption.

Virtuelles Kraftwerk

Die zunehmende Nutzung erneuerbarer Energien erhöht das Risiko von unvorhersehbaren Abschnitten oder Spitzenwerten bei der Energieerzeugung. Ein virtuelles Kraftwerk reduziert diese Risiken, indem es mehrere kleine Produktionseinheiten zusammenfasst.

Smart Home System

Der größte Teil der öffentlichen Mittel für die Energieeffizienz in der EU wird für den Gebäudesektor vorgeschlagen. Die Bundesmittel in diesem Bereich belaufen sich 2014 auf 5,4 Milliarden Euro. Ein intelligentes Heimsystem ist eine Möglichkeit, die Energieeffizienz von Wohnungen zu verbessern.

Intelligente Beleuchtung

Intelligente Straßenlaternen ermöglichen die Reduzierung der Betriebskosten im Zusammenhang mit der öffentlichen Beleuchtung, indem sie Städte und Bürger mit mehreren Mehrwertdiensten versorgen.

Öffentliches Ladesystem für Elektrofahrzeuge

Die aktuelle EU-Verordnung über die Emissionen von Personenkraftwagen ist die weltweit strengste. Neben weiteren Einschränkungen können die Schwellenwerte mit herkömmlichen Autos nicht mehr erreicht werden. Eine alternative Technologie, die die lokalen Emissionen reduziert, sind Elektrofahrzeuge.