Datenschutzhinweis

Willkommen auf BABLE

Wir legen großen Wert auf den Datenschutz und verwenden daher die von Ihnen zur Verfügung gestellten Daten mit größter Sorgfalt. Sie können die Daten, die Sie uns zur Verfügung stellen, in Ihrem persönlichen Dashboard verwalten. Unsere vollständigen Regelungen zum Datenschutz und zur Klärung Ihrer Rechte finden Sie in unserer Datenschutzerklärung. By using the website and its offers and navigating further, you accept the regulations of our privacy notice.

Akzeptieren

Die Pilotphase von Bable@bw wird gefördert durch das Innen- und Digitalisierungsministerium Baden-Württemberg im Rahmen der Digitalalakademie@bw. Ziel ist die Unterstützung von Kommunen und Landkreisen bei Wissenstransfer und Innovationsprozessen für digitale Umsetzungsprojekte.

OK
Diese Seite wurde automatisch übersetzt. Für die englische Version, klicken Sie bitte hier.

Beschreibung

For over a decade, European municipalities have been establishing initiatives, strategies and action plans to increase the energy efficiency of private and communal infrastructure. Municipalities of EU member states, enforced by the EU Directive on energy efficiency, must work collaboratively to ensure that by 2020 and 2030, an energy efficiency of 20% and of 32.5% are met, respectively.

Initiatives, such as the Covenant of Mayors, have been launched to foster commitment towards energy and climate targets. Signatories voluntarily agreed to increase energy efficiency and the use of renewable energy sources. To achieve this, participating municipalities drafted and submitted a Sustainability Energy Action Plan (SEAP), defining their energy saving and climate measures. More than 6000 municipalities have developed and approved a SEAP since 2008; however, when compared to the total number of municipalities across Europe, there is still a long way to go.

It has been identified that a municipality's building stock represents the single largest potential for energy savings. It is also expected that more than two-thirds of the world population will live in urban areas by 2050. Therefore, this solution aims to ease the conception and implementation of municipal energy saving measures.

Problems to be solved

Fossil fuel consumption

Carbon emissions

Detrimental urban air quality

Wasted energy

Unreliable energy supply

Low energy monitoring

Nutzen

The following benefits are expected as a result of an energy saving system in a city or municipality:

Mögliche Vorteile
  • Reduzierung des Verbrauchs von Fossilien

  • Reduzierung der Treibhausgasemissionen

  • Steigender Anteil erneuerbarer Energien

  • Sinkender Energieverbrauch in Gebäuden

  • Verbesserung der Effizienz der Energienutzung

  • Verbesserung der Energieeffizienz in der Energieversorgung

  • Reduzierung des Spitzenenergiebedarfs

  • Reduzierung der Energiekosten

  • Verbessert die Netzstabilität

Funktionen

Funktionen helfen Ihnen zu verstehen, was die Produkte für Sie tun können und welche Ihnen dabei helfen, Ihre Ziele zu erreichen.
Jede Lösung hat mindestens eine obligatorische Funktion, die erforderlich ist, um den grundlegenden Zweck der Lösung zu erreichen, und mehrere zusätzliche Funktionen. Diese Funktionen können hinzugefügt werden, um zusätzliche Vorteile zu bieten.

Obligatorische Funktionen
    Reduction of energy consumption

    Installed systems must demand less or allow for a lower energy consumption

    Optimisation of municipal energy load

    Installed systems must allow for the optimal allocation of energy load

    Comply with local regulations on energy efficiency
Mögliche Funktionen
    Reutilisation of wasted energy

    Thermal energy recovery

    Storage of energy

    Storage of excess electric and heat production

Varianten

Energy saving actions follow two basic directions: efficiency and effectiveness. Efficiency, by new and improved performing systems; effectiveness, by improvements in control systems to avoid energy waste and by adopting a technical building management system. The following presents different measures in which these two directions have been applied.   

Beschreibung

Demand side management (DSM) is an essential component in the energy management of smart grids. Generally, DSM means to manage the consumer’s energy usage in such a way to yield desired changes in load profile and facilitates the consumers by providing them incentives. For this purpose, various DSM techniques have been developed with diverse functionalities. These include peak clipping, valley filling, load shifting, strategic conservation, strategic load growth, and flexible load shape. Furthermore, DSM is capable of handling the communication infrastructure between the end user and utility and also enables the integration of distributed energy resources to optimise the energy consumption profile.

Anwendungsfälle

Bedarfsgerechte Reaktionskontrolle für öffentliche Gebäude

Der Use Case zielt darauf ab, die strategische Lastverminderung in öffentlichen Gebäuden über bestehende BEMS zu realisieren.

Bedarfsgerechte Reaktionskontrolle für Bürogebäude (Akademisches Gebäude)

Der Use Case zielt darauf ab, die strategische Lastverminderung in akademischen Gebäuden über bestehende BEMS zu realisieren.

Demand Side Response (DSR)-Kontrolle für Studentenunterkünfte

Der Use Case zielt darauf ab, über bestehende BEMS eine strategische Lastverminderung in Studentenwohnheimen zu erreichen.

Beschreibung

Commercial and residential buildings are considered to be the type of infrastructure that has the highest energy consumption across Europe. In 2016, buildings represented almost 40% of the EU final energy consumption. In order to promote energy saving, building standards must enforce a whole building design.

This does not only apply to the new building stock, but to the existing stock as well. A recent study by DG Internal Policy reveals that the stock of residential buildings in the EU is rapidly aging, with more than 40% of them built before 1960, and 90% before 1990.

Anwendungsfälle

Energieeffiziente Sanierung eines Wohngebäudes - Brf Årstakrönet

Im Rahmen des Projekts GrowSmarter konzentriert sich diese Maßnahme auf die energieeffiziente Sanierung eines Wohngebäudes aus dem Jahr 2007: Brf Årstakrönet, mit 56 privaten Eigentumswohnungen.

Energieeffiziente Sanierung des Gebäudes - Bildungszentrum Escola Sert

Gas Natural Fenosa hat die energetische Sanierung eines Bildungszentrums Escola Sert durchgeführt. Ziel ist es, die technische und wirtschaftliche Machbarkeit der Ergänzung eines tertiären Gebäudes um erneuerbare Energieerzeugung in Form von gebäudeintegrierter Photovoltaik (BIPVs) zum Eigenverbrauch zu validieren.

Intelligente Gebäudesanierung in Köln

Um die Energieeffizienz bestehender Wohngebäude im Rahmen des EU Horizon 2020 GrowSmarter Project um 70% zu verbessern, wurden Renovierungsmaßnahmen durchgeführt. Dazu gehören die Isolierung der Gebäudehülle, hocheffiziente Fenster, Treppenhausbeleuchtung, Aufzug und Heizungsanlage.

Beschreibung

Not including Mediterranean countries, space heating represents 60-80% of the total energy consumption for European building stock. Consequently, there is a great potential for energy savings by improving the efficiency of space heating systems. One method that is currently gaining popularity is the recovery of wasted heat from sewage pipes through heat exchangers. Cold input water and output water of electric or gas boilers is heated by the system of heat exchangers and heat pumps.

Anwendungsfälle

Waste heat recovery from sewage water

The projects entails the installation of a heat exchanger and water-to-water heat pumps that will recover the heat from sewage water in order to improve the efficiency of gas fired heaters in schools

Beschreibung

One direct method to save energy is through storage. In periods of excess energy production, municipalities can store energy for later usage. A storage system widely used is through second life lithium-ion batteries from electric vehicles. Li-ion batteries are deemed ineffectual for electric vehicles when it has reached an 80% charging capacity; nevertheless, they can be used as a great storage system if repurposed adequately.

Anwendungsfälle

Wiederverwendung von EV-Batterien zur Energiespeicherung

Lösungen für die Wiederverwendung von eher schnell alternden, aber wertvollen Batterien von EVs. Die EV-Taxis der privaten Firma OU Takso in Tartu werden teilweise wieder aufgeladen, basierend auf erneuerbarer Energie, die vor Ort mit PV-Modulen produziert und in gebrauchten EV-Batterien gespeichert wird, um die Ausbeute der Batterien zu verbessern.

Beschreibung

Energy use in water supply systems represents a considerable portion of the total energy consumption in a municipality. The electricity consumption due to water pumping represents the highest proportion of the energy costs in these systems. Considering energy savings in water supply is therefore a pressing matter.  
A measure to achieve this is recommended by Ioan Sarbu (2016) by either applying variable-speed pumps along the water supply network, or by implementing a smart controller which quantifies, locates, and adjusts the opening of control valves in the water supply network. The latter was found by Araujo (2006), which minimises pressure and leakage levels in the network.

Anwendungsfälle

Smart Meter Informationsanalyse und Stellglieder

In Barcelona setzte Endesa einen innovativen "Data Hub" namens Multiservice Concentrator (MSC) ein, der in der sekundären Umspannwerkstatt verteilt wurde, um als Datenknoten zu dienen und Stadtdaten zu sammeln und zu verwalten.

Beschreibung

In Europe, the amount of the electrical energy used for illuminating the interiors of buildings and streets is considered to be of about 40%. Street lighting is one of the biggest electrical energy consumers, accounting for about 40% of the total energy consumption in cities. At the same time, energy required to illuminate buildings is considered to be around 17% of all electricity consumed, making it the largest end use of electricity. Implementations in smart lighting have been widely adopted across Europe due to the recognised energy saving potential.

Anwendungsfälle

Eigenständige intelligente Straßenbeleuchtung in Stockholm

Im Rahmen der Smart Lighting-Maßnahme des Grow Smarter-Projekts sollen drei verschiedene Technologien für die intelligente Straßenbeleuchtung demonstriert und getestet werden: ferngesteuerte, selbstgesteuerte und sensorgesteuerte LED-Beleuchtung. In diesem Anwendungsfall liegt der Fokus auf einem eigenständigen System.

Intelligente Straßenbeleuchtung in Tartu

Die Stadt Tartu ersetzte 320 bestehende Natriumdampflampen im Stadtzentrum von Tartu durch energieeffiziente LED-Beleuchtung. Die neue Beleuchtung, die Verkehrs- und Umweltsensoren bilden zusammen mit den von der OU Cityntel entwickelten Funksteuergeräten ein intelligentes Straßenbeleuchtungsnetzwerk.

Intelligente Straßenbeleuchtung in Ludwigsburg

Als Teil des Innovationsnetzwerkes "Living LaB" in Ludwigsburg ist dieser Use Case ein Beispiel dafür, wie Städte in Zukunft "intelligenter" werden können.

Kostenstruktur

Local authorities may be tempted to opt for projects improving energy efficiency with short paybacks. However, this approach will not capture the majority of potential savings available through energy retrofits. Instead, it is recommended that all profitable options are included, especially those which yield a rate of return higher than the interest rate of the investment capital. This approach will translate into greater savings over the long term. Too often, quick paybacks on investments mean that organisations do not pay attention to "lifecycle costing".

Life cycle costs are the total cost of ownership over the life of an energy saving system, such as: planning, design, construction and acquisition, operations, maintenance, renewal and rehabilitation, depreciation and cost of finance and replacement or disposal. Payback time should be compared with the lifespan of the goods to be financed. For instance, a 15-year payback time should not be considered as a long period of time when it comes to building with a lifespan of 50-60 years.

Regulations

Geschäftsmodell

Efficiency Performance Contracting (EPC) (ClimACT, 2017)

An energy performance-based business model proposes a partnership between customers and Energy Servicing Companies (ESCOs) to develop energy saving measures. EPC’s can be executed in two forms: through shared-savings, or through a guaranteed-savings scheme. In a shared-savings EPS, an ESCO is remunerated based on the project’s generated energy saving and the fee paid by the customer reimburses the capital costs of the project. In a guaranteed savings EPC, the ESCO takes on a technical risk, by guaranteeing a saving percentage on the customers energy bill. If the agreed savings are not achieved, the ESCO is required to reimburse the customer the difference between the actual savings and the agreed upon savings. The customer finances the measure completely, relying on the performance promised by the ESCO.

An EPC is well suited for large scale projects, especially in the public sector, because of high transaction costs and long payback times. Usually, the private sector is less attracted to contracts with long payback times.This means that, in order to establish a contract in the private sector, ESCOs should focus on the implementation of ECMs with rapid return of investment. Difficulties to set up an energy baseline make it harder for the ESCO to predict energy savings and the measurement and verification process needed to follow up on the project results can be costly (Warget, 2011).

Build-Own-Operate-Transfer (BOOT) (ClimACT, 2017)

In the Build-Own-Operate-Transfer (BOOT) business model, the ESCO has complete control of the energy saving measure. They build, deploy, and operate the project through a given contracted period of time. At the end of the contract, the ESCO transfers the installation/system to the customer.

During the contracted period of time, the ESCO is in control of the energy saving measure and a fee is charged to the customer for the service delivered. This way, the ESCO investment and operational costs are covered by the fees. The BOOT model is similar to a loan made by the ESCO to the costumer, which also includes energy management during the contract period.

Chauffage (EU JRC, 2021)

In a Chauffage Business Model, the ESCO takes over complete responsibility for providing the energy services (e.g. space heat, lighting, motive power, etc.) to the customer. As a form of outsourcing energy management, Chauffage is typically used in municipalities where the energy supply market is competitive. 

The ESCO assumes the responsibility for providing the agreed energy service for a cost lower than the previous service or for a more efficient service for the same cost. The more efficient and cost-effective it can supply energy, the greater earnings the ESCO will have. Chauffage contracts give the strongest incentive to ESCOs to provide services in an efficient way. The fee paid by the municipality under a Chauffage arrangement is calculated on the basis of its existing energy bill minus a percentage saving (often in the range of 5-10%). Thus, the municipality is guaranteed an immediate saving relative to its current bill.

Chauffage contracts are typically quite long (20-30 years) and the ESCO provides all the associated maintenance and operation during the contract. Chauffage contracts are very useful whenere the customer wants to outsource facility services and investment.

 

Stakeholder-Zuordnung

Stakeholder Map for a municipal energy saving system (BABLE, 2021)

Stadt-Kontext

The United Nations Economic Commission for Europe (UNECE, 2020) has listed seven recommendations to implement and adopt energy savings systems:

  1. Continue harmonisation of building energy codes by ensuring comprehensive coverage of all types of buildings.
  2. Define national energy efficiency target, which is to be based on primary (or final) energy consumption, primary (or final) energy savings, or on energy intensity.
  3. Continue strengthening requirements for insulation, ventilation and technical installations.
    • Give more attention to the airtightness of the building envelope
    • Ensure building codes include requirements for air conditioning, lighting, use of renewable energy sources, and natural lighting
    • Make mandatory requirement for inspection of boilers and air-conditioning systems to improve quality and precision of energy performance certification in multi-family buildings
    • Follow a holistic approach in building energy codes based on building energy performance requirements (heat, ventilation, air conditioning, lighting, etc.)
  4. Introduce or strengthen quality assurance measures, especially during the early stage of energy performance certification.
    • Requirements for certifying experts should be harmonised
    • Certifier needs to be physically present on-site
    • Quality check procedure of energy performance certification should be harmonised
    • Development of centralised energy performance certification databases and digitalisation of certification process
  5. Challenges of infrastructure energy performance data collection on energy use and the existing gaps should be priority areas for research.
  6. Establish or strengthen proper electronic monitoring system of compliance, enforcement and quality control processes to ensure compliance with international building energy codes and standards.
  7. Define measures to ensure that materials and products used in construction are subject to rigorous quality control to meet energy efficiency requirements, to maintain resistance of buildings to local environmental loads, and to ensure they do not threaten safety of people and property.

Initiativen der Regierung

  • European Green Deal: In October 2020, the Commission presented its renovation wave strategy, as part of the European Green Deal. The strategy contains an action plan with concrete regulatory, financing and enabling measures to boost building renovation. Its objective is to at least double the annual energy renovation rate of buildings by 2030 and to foster deep renovation.
  • Energy Efficiency Obligation Scheme: Created as a result of the EE Directive, these schemes require energy companies to achieve energy savings at the level of 1.5% of their annual energy sales to final consumers by implementing energy efficiency measures. Alternatively, countries may introduce other policy measures to stimulate energy savings. EEOSs target energy suppliers, retailers and distributors as these groups are best placed to identify and carry out energy savings with their customers.
  • Energy Performance Certificates: Energy performance certificates provide information to consumers on buildings they plan to purchase or rent. They include an energy performance rating and recommendations for cost-effective improvements of the energy performance of a building or building unit.

Daten und Normen

  • LEED – Leadership in energy and Environmental Design
  • BREEAM – Building Research Establishment Environmental Assessment Method
  • German Energy Saving Ordinance - EnEV

Die Erstellung dieser Lösung wurde durch EU-Finanzierung unterstützt

Anwendungsfälle

Wiederverwendung von EV-Batterien zur Energiespeicherung

Lösungen für die Wiederverwendung von eher schnell alternden, aber wertvollen Batterien von EVs. Die EV-Taxis der privaten Firma OU Takso in Tartu werden teilweise wieder aufgeladen, basierend auf erneuerbarer Energie, die vor Ort mit PV-Modulen produziert und in gebrauchten EV-Batterien gespeichert wird, um die Ausbeute der Batterien zu verbessern.

Waste heat recovery from sewage water

The projects entails the installation of a heat exchanger and water-to-water heat pumps that will recover the heat from sewage water in order to improve the efficiency of gas fired heaters in schools

Intelligent Street Lighting

This project is a key part of Aberdeen's digital transformation. The City COuncil has invested in a £9.7 million seven-year rolling programme of replacing the old inefficient and expensive street lighting with more efficient and cost-effective LED lighting.

Energiespeicheranlagen

Energiespeichersystem mit Li-Ionen-Akkus, das bidirektionale Flexibilität bietet. Es ist auf dynamische Zyklen ausgerichtet.

Bedarfsgerechte Reaktionskontrolle für öffentliche Gebäude

Der Use Case zielt darauf ab, die strategische Lastverminderung in öffentlichen Gebäuden über bestehende BEMS zu realisieren.

Demand Side Response (DSR)-Kontrolle für Studentenunterkünfte

Der Use Case zielt darauf ab, über bestehende BEMS eine strategische Lastverminderung in Studentenwohnheimen zu erreichen.

Smart Meter Informationsanalyse und Stellglieder

In Barcelona setzte Endesa einen innovativen "Data Hub" namens Multiservice Concentrator (MSC) ein, der in der sekundären Umspannwerkstatt verteilt wurde, um als Datenknoten zu dienen und Stadtdaten zu sammeln und zu verwalten.

Energieeffiziente Sanierung des Gebäudes - Bildungszentrum Escola Sert

Gas Natural Fenosa hat die energetische Sanierung eines Bildungszentrums Escola Sert durchgeführt. Ziel ist es, die technische und wirtschaftliche Machbarkeit der Ergänzung eines tertiären Gebäudes um erneuerbare Energieerzeugung in Form von gebäudeintegrierter Photovoltaik (BIPVs) zum Eigenverbrauch zu validieren.

Eigenständige intelligente Straßenbeleuchtung in Stockholm

Im Rahmen der Smart Lighting-Maßnahme des Grow Smarter-Projekts sollen drei verschiedene Technologien für die intelligente Straßenbeleuchtung demonstriert und getestet werden: ferngesteuerte, selbstgesteuerte und sensorgesteuerte LED-Beleuchtung. In diesem Anwendungsfall liegt der Fokus auf einem eigenständigen System.

Energieeffiziente Sanierung eines Wohngebäudes - Brf Årstakrönet

Im Rahmen des Projekts GrowSmarter konzentriert sich diese Maßnahme auf die energieeffiziente Sanierung eines Wohngebäudes aus dem Jahr 2007: Brf Årstakrönet, mit 56 privaten Eigentumswohnungen.

Intelligente Gebäudesanierung in Köln

Um die Energieeffizienz bestehender Wohngebäude im Rahmen des EU Horizon 2020 GrowSmarter Project um 70% zu verbessern, wurden Renovierungsmaßnahmen durchgeführt. Dazu gehören die Isolierung der Gebäudehülle, hocheffiziente Fenster, Treppenhausbeleuchtung, Aufzug und Heizungsanlage.

Intelligente Straßenbeleuchtung in Tartu

Die Stadt Tartu ersetzte 320 bestehende Natriumdampflampen im Stadtzentrum von Tartu durch energieeffiziente LED-Beleuchtung. Die neue Beleuchtung, die Verkehrs- und Umweltsensoren bilden zusammen mit den von der OU Cityntel entwickelten Funksteuergeräten ein intelligentes Straßenbeleuchtungsnetzwerk.

Greenwich Energy Hero DSM

In London, households in the Royal Borough of Greenwich were incentivised through points-based rewards to change their energy consumption patterns and behaviour, with the goal of reducing pressure on the grid during peak times.

Verwandte Lösungen

Lokales Energiesystem

Etwa ein Viertel des Energiepreises entfällt auf den Transport der Energie. Die Implementierung eines lokalen Energiesystems kann die Energieerzeugung von einem zentralen System auf ein dezentrales System verlagern.

Energy Storage Systems

Energy storage systems are used to store energy that is currently available but not needed, for later use. The goal is to create a reliable and environmentally friendly system. As the share of renewables increases, so does the need for storage. With storage, energy can be used when it is needed.

Intelligente Beleuchtung

Intelligente Straßenlaternen ermöglichen die Reduzierung der Betriebskosten im Zusammenhang mit der öffentlichen Beleuchtung, indem sie Städte und Bürger mit mehreren Mehrwertdiensten versorgen.

Smart Microgrids

Microgrids are emerging as an attractive, viable solution for cities, utilities, and firms to meet the energy needs of communities by leveraging more sustainable resources, while increasing resilience, reducing emissions, and achieving broader policy or corporate goals.

Energiemanagement-System für Gebäude

Der größte Teil der öffentlichen Mittel für die Energieeffizienz in der EU wird für den Gebäudesektor vorgeschlagen. Die Bundesmittel in diesem Bereich belaufen sich 2014 auf 5,4 Milliarden Euro. Eine Möglichkeit, die Energieeffizienz von Gebäuden zu erhöhen, ist die Implementierung eines Gebäudeenergiemanagementsystems (BEMS).

Energy Efficient Retrofitting of Buildings

Improving energy efficiency of the building stock in a city needs strategic and long-term thinking. Complex ownership structures, market barriers, diversity of building typologies, consumer preferences and multiple stakeholders involved makes energy efficient retrofitting a big challenge.

Something went wrong on our side. Please try reloading the page and if the problem still persists, contact us via support@bable-smartcities.eu