Datenschutzhinweis

Willkommen auf BABLE

Wir legen großen Wert auf den Datenschutz und verwenden daher die von Ihnen zur Verfügung gestellten Daten mit größter Sorgfalt. Sie können die Daten, die Sie uns zur Verfügung stellen, in Ihrem persönlichen Dashboard verwalten. Unsere vollständigen Regelungen zum Datenschutz und zur Klärung Ihrer Rechte finden Sie in unserer Datenschutzerklärung. By using the website and its offers and navigating further, you accept the regulations of our privacy notice.

Akzeptieren

Die Pilotphase von Bable@bw wird gefördert durch das Innen- und Digitalisierungsministerium Baden-Württemberg im Rahmen der Digitalalakademie@bw. Ziel ist die Unterstützung von Kommunen und Landkreisen bei Wissenstransfer und Innovationsprozessen für digitale Umsetzungsprojekte.

OK
Diese Seite wurde automatisch übersetzt. Für die englische Version, klicken Sie bitte hier.

Beschreibung

Zusätzlich sind Einrichtungen zum Laden der Elektrobusse obligatorisch. Aufgrund des Ladevorgangs ist ein Managementsystem für den Betrieb und die Planung der Reichweite sowie die Routenoptimierung noch wichtiger als bei herkömmlichen Bussystemen.

Nutzen

The main goal of the Electric Bus Sytem is to reduce the local air congestion within cities. Besides that, the solution achieves the benefits listed below. Whereas some benefits are likely to be fulfiled with a basic implementation of the solution, the fulfilment of the potential benefits depends on the functions implemented in a specific project.

Hauptvorteile
  • Reduzierung des Verbrauchs von Fossilien

  • Förderung von nachhaltigem Verhalten

Mögliche Vorteile
  • Förderung nachhaltiger privater Verkehrsmodelle

  • Reduzierung der Treibhausgasemissionen

  • Reduzierung der lokalen Luftverschmutzung

Funktionen

Funktionen helfen Ihnen zu verstehen, was die Produkte für Sie tun können und welche Ihnen dabei helfen, Ihre Ziele zu erreichen.
Jede Lösung hat mindestens eine obligatorische Funktion, die erforderlich ist, um den grundlegenden Zweck der Lösung zu erreichen, und mehrere zusätzliche Funktionen. Diese Funktionen können hinzugefügt werden, um zusätzliche Vorteile zu bieten.

Obligatorische Funktionen
    Fahrgast mit dem Bus bewegen
    Busservice bezahlen
    Elektrobusse laden
Mögliche Funktionen
    Bussystem überwachen
    Fahrgäste über das Bussystem infromieren

Varianten

Aside from bus systems that do not exclusively use electricity (hybrid systems), there are three main variants for Electric Bus Systems (powered by battery with night-charging, opportunity charging or buses with a fuel cell). Moreover, there can be further differentiation depending on the charging system (plug-in charging, docking), battery types (e.g., Lithium-Ion technology (LFP, NCM/NCA, Li-Titanate)), etc.

(Fraunhofer MOEZ, 2015)

Beschreibung

The battery of the bus is charged once a day – usually at night at charging stations in the depot. These buses are suitable for shorter daily distances (ca. 100-200km).

(emcel, 2016, mobil.nrw, 2021)

Beschreibung

These buses have a smaller battery that is charged occasionally – mostly at the last stop of every route. They can be used on long daily distances (ca. 300km). Because of the charging process, they normally need longer at the last stop and require close substations. New technologies increase the efficiency of such charging processes, e.g.  fast charging or recovery of break energy (e.g., 1MW chargers with 400kW chargers already in place).

(emcel, 2016, mobil.nrw, 2021)

Beschreibung

The bus produces the energy for the electric propulsion with its own fuel cell and hydrogen that is carried in a tank. The system suits long daily distances. A hydrogen infrastructure is needed at the depot.

(emcel, 2016, mobil.nrw, 2021)

Stadt-Kontext

Additional infrastructure like charging stations or hydrogen infrastructure are needed depending on the variant implemented.

The efficiency and the necessity of Electric Bus Systems are linked to restrictions that are implemented on city or higher political level. Electric Bus Systems are expected to be supported by national and international policy and funding in future.

In general, regulations on emissions are introduced in the sector of buses first, before introducing the regulations for cars. Therefore, a diesel ban in urban areas is expected to be introduced for buses first.

The regulation (EU) 2019/1242 sets CO2 emission standards for heavy-duty vehicles. From 2025 on, manufacturers have to reduce emissions 15% compared to EU average in the reference period (1 July 2019- 30 June 2020). From 2030 onwards, there has to be a 30% reduction.

(European Commission, 2020)

Unterstützende Faktoren

A strong energy grid, which can be used for charging by the electric buses, simplifies the implementation of this solution. Besides this, it is recommended to invest in sustainable and local energy generation to reduce energy costs and increase the environmental benefit of the Electric Bus System. A local smart grid supports balancing loads.

Initiativen der Regierung

  • The EU invests €2.2 billion in 140 key transport projects which also include electric bus projects. The projects will be supported through the Connecting Europe Facility (CEF) and are part of the efforts to fulfil the European Green Deal.
  • Most e-buses which are currently in operation are supported by local governments as a part of a pilot project. In Germany there is a funding program called “Anschaffung von Elektrobussen im öffentlichen Personennahverkehr” that helps to buy or lease buses with electric or hybrid propulsion. The total national funding adds up to €650 million.

(electrive.net, 2020, Federal Ministry for Economic Affairs and Energy, 2020, European Commission, 2020)

Stakeholder-Zuordnung

Stakeholders in electric bus systems (BABLE, 2021)

Marktpotenzial

In 2019, there were about 3.000 electric buses in Europe and the United States, which only represents 1% of all buses. However, a rapid growth is predicted for the next years and is highly driven by legal regulations and government initiatives. Cities like Paris, Moscow or Berlin are planning to purchase hundreds of new electric buses in the upcoming years.

Global municipal e-bus fleet (Consultancy.eu & Bloomberg, 2020)

The number of electric buses in Germany since 2009 shows a huge development and forecasts predict a further rise in electric buses for the future.

Development of electric buses in Germany since 2009 (PwC, 2020)

Kostenstruktur

High investment costs of electric buses in comparison to conventional (diesel) busses can be balanced with lower operational costs and longer lifespans (e.g., image Proterra). Some operators produce their own regenerative energy for the buses. The profitability of e-buses will increase as soon as there are stricter emission regulations or even diesel bans in urban areas. Restrictions are expected to be introduced in various European cities within the next few years.

Example Proterra

The graph shows the profitability of the operation of electric buses in comparison to other buses over a lifetime of ten years. The data is obtained out of manufacturer specifications from Proterra, who - as of March 2017 - is one of three e-bus manufacturers providing buses on large scale. According to this calculation, electric buses are cheaper despite higher investment costs since costs for fuel and maintenance are much lower compared to traditional buses.

Comparison of total cost of ownership (Proterra, 2021)

This calculation does not include the infrastructure of charging stations needed which is often the actual challenge. Depending on the technology, the infrastructure can cost a multiple than the implementation costs of the buses. The tendering process should be suitable for an economic construction of the infrastructure. One solution could be that the municipality provides the infrastructure, and the bus operators provide only the buses.

Regulations

  • Directive 2009/33/EG: Clean Vehicles Directive: directive to encourage clean and energy-efficient vehicles (EUR-Lex, 2021)
  • Regulation (EU) No 582/2011: update to Directive (EG) no 595/2009, regarding emissions of heavy-duty vehicles (EUR-Lex, 2021)
  • VO(EG) 595/2009: on type approval of heavy-duty vehicles (EUR-Lex, 2021)
  • UN-R49 regulation: regarding measures against emissions of engines used for transport (EUR-Lex, 2021)
  • 2007/46/EG: Regulations on busses in general (EUR-Lex, 2021)
  • RL 2001/85/EG (EUR-Lex, 2021) and UN-R66 (EUR-Lex, 2021): Security Regulations for Buses
  • UN-R100: Security Regulation for electric vehicles (EUR-Lex, 2021)
  • Richtlinie zur Förderung der Anschaffung von Elektrobussen im öffentlichen Personennahverkehr, by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (beck-online, 2021)

Die Erstellung dieser Lösung wurde durch EU-Finanzierung unterstützt

Anwendungsfälle

CNG-betriebene Busse in der Stadt Tartu

Mit dem Ziel, bis 2019 100% der Busse des öffentlichen Verkehrs in Tartu mit Gas zu betreiben, hat die Gemeinde 60 neue Biogasbusse für das öffentliche Verkehrsnetz gekauft.

Einführung des elektrischen öffentlichen Verkehrs

Die Stadt Turku hat neue Elektrobusse in die Flotte des öffentlichen Verkehrs aufgenommen, um das Ziel zu erreichen, bis 2029 CO2-neutral zu werden.

Elektro- und Hybrid-Elektrobusse für den öffentlichen Verkehr

Mindestens sechs neue Elektrobusse wurden in die bestehende Busflotte Madrids eingeführt und im Lebenslabor der Stadt unter realen Bedingungen getestet. Das Hauptziel ist der Einsatz einer sauberen Busflotte in Gebieten, in denen es an hochwertigen öffentlichen Verkehrsmitteln mangelt.

On-call company transport as a flexible and sustainable alternative to company cars

Thanks to digitalisation and optimisation, a total of 14 accessible vehicles have been successfully operating between the Bonn, Darmstadt and Frankfurt sites. Since then, the company transport service has offered Telekom employees a flexible and sustainable alternative to a company car.

Autonomous shuttles and the use of solar energy on the streets of Lamia, Greece

This project was part of the Horizon2020 FABULOS project, where Auve Tech participated together with Mobile Civitatem Consortium. Despite the country's lockdown due to the COVID-19 pandemic, our autonomous shuttles covered a total of 1,930km and served 399 end users.

Autonomous shuttle connecting the airport, the shopping centre and Ülemiste City in Tallinn

An autonomous shuttle bus service connected the frequently visited Ülemiste City with the Tallinn International Airport and the Ülemiste shopping center by extending the existing public transportation network.

Verwandte Lösungen

Fahrzeug-Sharing-System

Fahrzeug-Sharing-Systeme ermöglichen es den Kunden, verschiedene Fahrzeuge zu nutzen, ohne sie zu besitzen. Es gibt verschiedene Arten von Fahrzeug-Sharing-Systemen auf dem Markt. Unterschiede können das geteilte Fahrzeug sein, wie z.B. Carsharing, Bikesharing, Rollersharing oder Elektrofahrzeugsharing.

Bike Sharing System

Ein Fahrrad-Sharing-System soll eine Community dazu bringen, eine Flotte von Fahrrädern zu teilen. Die Nutzer müssen also kein Fahrrad besitzen, aber jeder kann die Flotte flexibel nutzen.

Intermodale Mobilitätszentren

Der Verkehrssektor ist für 28 Prozent der Treibhausgasemissionen verantwortlich, der Großteil davon (60 Prozent) wird durch die persönliche Mobilität verursacht. Eine Möglichkeit, die Umweltauswirkungen der persönlichen Mobilität zu verringern, ist die nahtlose Integration verschiedener Verkehrsmittel über Mobilitätszentren.

Electrification of fleets

One solution to reduce transport-related CO2 emissions is electric mobility. Depending on the characteristics of the fleet and its users, different options for electrification are most beneficial.

Something went wrong on our side. Please try reloading the page and if the problem still persists, contact us via support@bable-smartcities.eu