Willkommen auf BABLE

Wir legen großen Wert auf den Datenschutz und verwenden daher die von Ihnen zur Verfügung gestellten Daten mit größter Sorgfalt. Sie können die Daten, die Sie uns zur Verfügung stellen, in Ihrem persönlichen Dashboard verwalten. Unsere vollständigen Regelungen zum Datenschutz und zur Klärung Ihrer Rechte finden Sie in unserer Datenschutzerklärung. By using the website and its offers and navigating further, you accept the regulations of our privacy notice.


Die Pilotphase von Bable@bw wird gefördert durch das Innen- und Digitalisierungsministerium Baden-Württemberg im Rahmen der Digitalalakademie@bw. Ziel ist die Unterstützung von Kommunen und Landkreisen bei Wissenstransfer und Innovationsprozessen für digitale Umsetzungsprojekte.

Diese Seite wurde automatisch übersetzt. Für die englische Version, klicken Sie bitte hier.


In order to reduce fossil energy consumption, electric mobility is a key component of creating sustainable transportation. Not only is the transport sector responsible for 30% of total EU CO2 emissions (72% of which are from road transport), but the rate of emission reductions has also slowed down. Other sectors, such as energy, agriculture, forestry, fisheries and housing, have significantly reduced their CO2 emissions since 1990, while in the transport sector's CO2 emissions are higher today than in 1990 due to the ever-increasing role of mobility in our lives (European Parliament, 2019). One solution to reduce transport-related CO2 emissions is electric mobility. Due to their longer lifespan and lower operational costs, electric vehicles can be financially beneficial. Fleet solutions facilitate the diffusion of electric vehicles rapidly and successfully into the market. Additionally, facilities to charge the electric vehicles are mandatory (Proff, Fojcik 2016, p. 128).

The main goal is to diffuse electric mobility for environmental reasons. The overall vehicle population can be reduced by building up electric fleets. Plus, using electric fleets provides opportunities for companies and cities to create an innovative image and to test new technologies. The limited range of electrically driven vehicles is often less of an issue for company- and city-operated vehicles, as shorter distances are primarily covered. Fleet applications offer excellent opportunities for fast and successful diffusion of electric vehicles into the market, paticularyl since e.g. around 60 % of annual new car registrations in Germany are accounted for by companies and the self-employed. After their first commercial use, the vehicles are usually transferred to the used car market after a few years. Electric fleets for companies are thus a catalyst for the wider potential market diffusion of electric vehicles.


The main goal of fleet electrification is to reduce local air pollution by reducing the emissions of a fleet. Additionally, it can also decrease the fleet's operational costs as well as the noise pollution within a city. Whereas some benefits are likely to be fulfilled with a basic implementation of the solution, the fulfillment of the full scope of potential benefits depends on the functions implemented in a specific project.

  • Reduzierung der lokalen Luftverschmutzung

  • Reduzierung der Treibhausgasemissionen

Mögliche Vorteile
  • Reduzierung der Betriebskosten

  • Förderung von nachhaltigem Verhalten

  • Förderung nachhaltiger privater Verkehrsmodelle

  • Verbesserung der Lebensqualität

  • Reduzierung des Verbrauchs von Fossilien


Funktionen helfen Ihnen zu verstehen, was die Produkte für Sie tun können und welche Ihnen dabei helfen, Ihre Ziele zu erreichen.
Jede Lösung hat mindestens eine obligatorische Funktion, die erforderlich ist, um den grundlegenden Zweck der Lösung zu erreichen, und mehrere zusätzliche Funktionen. Diese Funktionen können hinzugefügt werden, um zusätzliche Vorteile zu bieten.

Obligatorische Funktionen
    provide electric vehicles

    Vehicles within the fleet, can be e.g. e-cars, e-bikes or e-scooters

    provide charging stations

    Products, that enable the user/ operator to charge the vehicles within the fleet

Mögliche Funktionen
    give access to public charging infrastructure

    Products, that enable the user to access public infrastructures for charging

    manage fleet

    Products, that enable the management of the fleet including e.g. charging times, ranges and multiple users and vehicles

    manage enery demand

    Products, that enable a holistic enery management

    train users

    Products, that enable the user as well as the fleet operator to optimize their usage of the fleet

    insure the electrified fleet

    Insurances covering the fleet as well as the related infrastructure

    maintain the fleet

    Services maintaing the fleet and the required infrastructres

    install charging infrastructure

    Services installing the charging infrastructure according to the local needs


 Market Size

About 60 percent of annual new car registrations in Germany are accounted for by companies and self-employed persons. After some years of business use, the vehicles are transferred to the used vehicle market. That is why electromobility in fleets creates an opportunity to diffuse environmentally-friendly vehicles rapidly and successfully into the overall market. The development of electric vehicles in previous years has shown a steady growth worldwide (refer to Figure X, below) (Andreas Ahlswede, 2019). However, the share of electric vehicles as a segment of all vehicles is still low. Figure X shows that the share of electric vehicles on the market in Europe was below 2% in 2018, second after China. This statistic includes battery-powered electric vehicles (BEV) as well as plug-in hybrid electric vehicles (PHEV). The share of BEVs is even below 1 percent (International Energy Agency, 2019). The countries with the highest number of new electric car sales are Norway, Germany and the United Kingdom.


The worldwide number of electric cars in February 2019 was 5.6 Million. Compared to the previous year, this represents an increase of 64 % (Zentrum für Sonnenenergieund Wasserstoff-Forschung Baden-Württemberg, 2019).

 Market Development

The annual kilometres travelled by shared mobility (taxi, car-sharing, …) accounts for less than 5% of the overall travelled distance of passenger vehicles. According to Bloomberg NEF, this is expected to rise to 19 % of total kilometres travelled by 2040. As mentioned before, mobility fleets provide an opportunity to diffuse electric vehicles rapidly into the market. While only 1.8% of shared mobility fleets are comprised of electric vehicles, by 2040 80% of the vehicles used in fleets are expected to be electric. Furthermore, by 2040 it is expected that the passenger vehicle sales will be 57% electric and 30% of the global vehicle fleet will be electric. The predicted rise of electric vehicle sales is based on the theses that battery prices are falling, plus emission regulations are getting tighter, both at the national as well as the city level. In addition, research by Bloomberg NEF shows that the share of electric vehicles in the segment 'light commercial vehicle' is expected to rise the most, after the segments 'passenger', 'medium commercial' and 'last heavy commercial' (McKerracher, Izadi-Najafabadi et al., 2019). Nevertheless, according to estimates by Frost & Sullivan, corporate car sharing should increase enormously. According to these market researchers, only about 200 companies in Europe used corporate car sharing in 2013, but this number has been expected to rise to over 4,000 by 2020. After all, this could create access to vehicles for employees who do not have their own company car.

 Operating Model

There are three different operating models of electric car fleets. These are divided into self-administrated fleets, outsourced fleets and a mixture of the two. The main reasons for outsourcing are the reduction of administrative work, access to expert knowledge/experience and the increase in cost transparency and security through fixed price offers. The advantages of in-house administration are independence from the service provider, the retention of internal know-how within the company and the preservation of individual processes. In a mixed form of the operator model, only certain services are outsourced, such as driver's license control. In addition, or alternatively, external services can be integrated, such as rental vehicles or car sharing offers. With centralized administration at one point in the entire company or group, the focus is more on optimization than with decentralized administration by the respective organizational units. Thus, approaches such as the shared use of vehicles are more likely to be considered for central administration.


Different varaiants are possible when electrifying a fleet, such as:

  • vehicle and battery purchase
  • vehicle purchase and battery leasing
  • vehicle and battery leasing
  • car sharing: Carsharing as a model for companies. The vehicles can be used both during working hours, e.g. to get to an appointment, and for private purposes. If used during working hours, the vehicles are invoiced via the company account, and if used off-hours they are invoiced privately. In the company context this model reduces the costs incurred due to the elimination of taxi costs and transports needed with company cars. The advantage of sharing a fleet is that the vehicles are used much more often. This increases the mileage and means that fewer vehicles must be purchased.

  • purchase of charging infrastructue

  • leasing of charging infrastructure

 Cost Structure

Resources needed:

1. Staff for planning and implementation

  • Marketing and communication experts
  • Financial and legal experts

2. Staff for operation

  • Maintanenace and reparation 
  • Fleet management

3. Hardware

  • Vehicles, charging stations
  • Tools to repair the vehicles (possible subcontractor)
  • Spare parts
  • Spare vehicles

4. Software

  • Back-end & Front-end for booking system
  • Back-end & Front-end for fleeet management system
  • Energy management system

5. Space

  • Space for vehicles and charging stations


The resources differ with regards to fixed and variable costs. An average split of the costs for a company car in Europe split up as the following image indicates:



  Stakeholder Mapping


Treibende Faktoren

City Context

1. Distances to be traveled

Due to the limited range of electric cars, a pure e-vehicle fleet is not very advantageous for companies in which long distances have to be covered daily. On average, 95% of all daily journeys are at a maximum of 40 km. The range of the electric cars currently on the market is up to 250 km in winter and up to 350 km in summer, meaning they are therefore quite sufficient in most cases.

2. Areas of use and speed of travel

The actual range depends on the driving profile (speed, gradient, ...) on which the e-car is driven and which additional energy consumers (e.g. heating) are switched on. In order to obtain a real range, therefore, about a quarter to a third of the above values must be subtracted. In addition to speed and gradient, the efficiency of the electric car and the air resistance value (cw value) also play a role in the range; because the electric car recovers energy during braking (recuperation effect), electric cars are also particularly suitable for city traffic.

For companies that operate predominantly in cities or in interurban traffic, the switch to electric cars is therefore more advantageous for their vehicle fleet than for companies whose routes increasingly take them along motorways.

3. Plannability of journeys

In connection with the range, it should also be noted that it is less advantageous to use only electric cars as company cars if the routes cannot be planned easily. However, if the same routes are covered every day or if they are always within a plannable range, it is possible to assess in advance for which use electric cars are most appropriate within the company.

But even if the distances are longer, planning is limited or the proportion of motorways is occasionally greater, environmentally-friendly mobility needs not to be completely abandoned. In such cases, the electric car fleet can then be easily supplemented by one or more combustion engines as pool vehicles, which can be accessed at any time. INSTADRIVE offers telematics solutions for company fleets to make the use of these vehicles by several employees as efficient as possible. With the help of a digital key the cars can then be unlocked and used by any authorized person. Information such as the current location or charge status of the e-cars can be accessed at any time via an app. A booking platform also enables the smooth running of operational car sharing.

4. Charging options

The availability of charging stations, or the possibility of installing them, is also a decisive factor in deciding on an operational e-car fleet. An electric car can be charged at any household socket (Schuko). However, a specially fused car socket (type 2) is preferable for safety reasons in the event of continuous use. Ideally, electric cars can be charged at a private parking space or in your own garage, which has the advantage that you are then hardly dependent on external charging infrastructure. In case the electricity can be drawn from a photovoltaic system, one even benefits from an additional cost advantage. If there is no charging station at home, it is advisable to find out about external charging options. Some employers offer their employees the opportunity to charge their electric cars during working hours. Otherwise, a public charging station would have to be used. The possibilities should be checked in advance.

5. Financial benefits

When considering equipping the company fleet with electric vehicles, the cost factor usually plays a role as well. Here, too, precise calculations must be made in order to obtain realistic savings potential. Although electric cars are more expensive to buy than comparable combustion engines, their operating costs are significantly lower than those of gasoline and diesel cars. Not only is charging with electricity (at around €2.50 per 100 km) significantly cheaper than conventional filling up, but an electric car also costs much less for maintenance and repairs. In addition, there are tax advantages for electric cars and the elimination of non-monetary remuneration (up to €960 gross), which represents enormous added value for employees and is therefore equivalent to an immediate salary increase.

Rechtliche Anforderungen

There are several governmental initiatives supporting the electrification of fleets such as:

  • Temporary exemption of the motor vehicle tax
  • Disadvantageousness equal to company car taxation
  • Wage tax advantages
  • Environmental bonus
  • Funding on the BMVI
  • KfW support programme (240/241)
  • Chinese EV quota
  • Fast E


Elektrifizierung der kommunalen Flotte in Turku

10 verschiedene Elektrofahrzeuge (E-Bikes, E-Cargo-Bikes, E-Vans, E-Vans, E-Cars) wurden zusammen mit verschiedenen Sensibilisierungsmethoden für E-Mobilität in verschiedenen Stadtverwaltungen getestet.

Testflotten, politische Anreize und Kampagnen für die Einführung von Elektrofahrzeugen

Die Stadt Madrid wollte den Einsatz von Elektrofahrzeugen (EVs) durch lokale Unternehmen fördern, indem sie das Ladennetz ausbaute und Elektrofahrzeuge mit dem Madrider Unternehmen für den städtischen Verkehr testete.

Elektrofahrzeug-Testflotten für Handwerker und Spediteure

Die Stadt Stockholm und ihre Partner wollen Vorurteile gegen Elektrofahrzeuge abbauen, indem sie 20 Unternehmen aus den Bereichen Handwerk, Lieferung und Taxi einladen, ein Jahr lang Elektrofahrzeuge auszuprobieren. Diese Unternehmen werden in der Lage sein, einen Elektro-Van zu den gleichen Kosten wie einen mit fossilen Brennstoffen betriebenen Van zu mieten.

Anbieten einer Testflotte von E-Bikes und Cargo-Bikes

Diese Maßnahme besteht darin, Unternehmen und Einwohnern in Årsta die Möglichkeit zu bieten, E-Cargo-Fahrräder für einen begrenzten Zeitraum zu testen, um herauszufinden, ob und inwieweit diese Fahrzeuge eine tragfähige Mobilitätsoption darstellen.

On-call company transport as a flexible and sustainable alternative to company cars

Thanks to digitalisation and optimisation, a total of 14 accessible vehicles have been successfully operating between the Bonn, Darmstadt and Frankfurt sites. Since then, the company transport service has offered Telekom employees a flexible and sustainable alternative to a company car.

Verwandte Lösungen

Last Mile Delivery

On-line sales have become an essential part of retail business in recent years. Consequently, the volume of traffic caused by delivery services has increased rapidly. What impacts cities most is he final track of the supply chain, the so called “Last Mile” delivery.


Fahrzeug-Sharing-Systeme ermöglichen es den Kunden, verschiedene Fahrzeuge zu nutzen, ohne sie zu besitzen. Es gibt verschiedene Arten von Fahrzeug-Sharing-Systemen auf dem Markt. Unterschiede können das geteilte Fahrzeug sein, wie z.B. Carsharing, Bikesharing, Rollersharing oder Elektrofahrzeugsharing.

Elektrisches Bussystem

Das elektrische Bussystem ist ein öffentliches Verkehrssystem, das nur mit Elektrobussen betrieben wird. Elektrobusse sind nicht nur wirtschaftlich sinnvoll, da sie keine lokalen Emissionen aufweisen, sondern aufgrund ihrer längeren Lebensdauer und niedrigeren Betriebskosten auch wirtschaftlich sinnvoll.

Bike Sharing System

Ein Fahrrad-Sharing-System soll eine Community dazu bringen, eine Flotte von Fahrrädern zu teilen. Die Nutzer müssen also kein Fahrrad besitzen, aber jeder kann die Flotte flexibel nutzen.

Intermodale Mobilitätszentren

Der Verkehrssektor ist für 28 Prozent der Treibhausgasemissionen verantwortlich, der Großteil davon (60 Prozent) wird durch die persönliche Mobilität verursacht. Eine Möglichkeit, die Umweltauswirkungen der persönlichen Mobilität zu verringern, ist die nahtlose Integration verschiedener Verkehrsmittel über Mobilitätszentren.

Bi-directional Electric Vehicle Charging

Bi-directional electric vehicle (EV) charging refers to EV chargers that allow not only for charging the battery of the EV but also for taking energy from the car battery and pushing it back to the grid when needed.

Paketauslieferung per Drohne

Lieferwagen für Pakete sind ein wesentlicher Bestandteil des Stadtverkehrs, der durch die Implementierung eine Auslieferung per Drohne reduziert werden kann. Da der Markt für Lieferungen deutlich und stetig wächst, wird dies noch relevanter.

Smart Parking

Ein Smart Parking System nutzt Sensoren oder andere Technologien, um die Verfügbarkeit von Parkplätzen in Städten zu ermitteln. Diese Informationen können mit den Fahrern ausgetauscht werden, was die Zeit für die Suche nach einem Parkplatz und damit die Verkehrsüberlastung reduziert.

Öffentliches Ladesystem für Elektrofahrzeuge

Die aktuelle EU-Verordnung über die Emissionen von Personenkraftwagen ist die weltweit strengste. Neben weiteren Einschränkungen können die Schwellenwerte mit herkömmlichen Autos nicht mehr erreicht werden. Eine alternative Technologie, die die lokalen Emissionen reduziert, sind Elektrofahrzeuge.

Something went wrong on our side. Please try reloading the page and if the problem still persists, contact us via